ПОДХОДЫ К РАЗРАБОТКЕ ДЕНДРИТНОКЛЕТОЧНЫХ И НЕОАНТИГЕННЫХ ПРОТИВООПУХОЛЕВЫХ ВАКЦИН

Н. А. Бугаев-Макаровский, П. В. Ершов ⊠, А. Г. Волкова, А. С. Макарова, А. А. Кескинов

Центр стратегического планирования и управления медико-биологическими рисками здоровью Федерального медико-биологического агентства, Москва, Россия

Среди неинфекционных заболеваний одной из ведущих патологий по количеству пациентов и показателям летальности являются элокачественные новообразования (ЗНО). Для терапии ЗНО есть несколько принципиальных подходов, однако ни один из них не является универсальным и не обладает высоким уровнем клинического ответа. Кроме того, для всех подходов характерно большое количество нежелательных побочных явлений. Наиболее перспективным в настоящее время считают применение иммунотерапии — как самостоятельный подход либо в комбинировании с другими видами терапии. Иммунотерапия обычно представляет собой использование специфичных антител (ингибиторов иммунных контрольных точек) либо применение специальных биопродуктов, таких как дендритные клетки (ДК) и искусственно синтезированные пептиды, например, неоантигены (НА). В обзоре рассмотрены стратегии разработки противоопухолевых вакцин на основе ДК и НА, возможности их усовершенствования и эффективность комбинирования с другими противоопухолевыми препаратами. Представлена также сводка актуальных в настоящее время клинических испытаний ДК- и НА-вакцин с кратким анализом базовых стратегий, достижений и трудностей, с которыми сталкиваются разработчики данного вида вакцин.

Ключевые слова: дендритные клетки, дендритноклеточная вакцина, неоантигены, неоантигенные вакцины, терапия онкологических заболеваний, таргетная терапия, клеточные технологии

Вклад авторов: все авторы внесли равный вклад в создание, написание и корректировку данной обзорной статьи.

Для корреспонденции: Павел Викторович Ершов

ул. Погодинская, д. 10, стр. 1, г. Москва, 119121, Россия; pershov@cspfmba.ru

Статья получена: 10.05.2023 Статья принята к печати: 29.05.2023 Опубликована онлайн: 28.06.2023

DOI: 10.47183/mes.2023.019

APPROACHES TO THE DEVELOPMENT OF THE DENDRITIC CELL AND NEOANTIGEN-BASED ANTITUMOR VACCINES

Bugaev-Makarovskiy NA, Ershov PV ™, Volkova AG, Makarova AS, Keskinov AA

Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Moscow, Russia

Malignant neoplasms occupy a leading place among non-communicable diseases based on the number of patients and mortality rate. There are several fundamental approaches to cancer therapy, however, none of them are universal or show a high level of clinical response. Furthermore, all the approaches are characterized by a large number of adverse side effects. Today, immunotherapy used alone or in combination with other therapies is considered to be the most promising. Immunotherapy is usually the use of specific antibodies (immune checkpoint inhibitors) or special bioproducts, such as dendritic cells and artificially synthesized peptides, such as neoantigens. The review considers strategies for development of the dendritic cell- and neoantigen-based anticancer vaccines, the possibilities of their improvement and the efficacy of combining with other anticancer drugs. The summary of current trials of the dendritic cell- and neoantigen-based vaccines is provided along with a brief analysis of the basic strategies, achievements and challenges faced by the developers of such vaccines.

Keywords: dendritic cells, dendritic cell vaccine, neoantigens, neoantigen vaccines, anticancer therapy, targeted therapy, cell technology

Author contribution: all authors made equal contributions to the review preparation, writing, and editing.

Correspondence should be addressed: Pavel V. Ershov

Pogodinskaya, 10, d. 1, Moscow, 119121, Russia; pershov@cspfmba.ru

Received: 10.05.2023 Accepted: 29.05.2023 Published online: 28.06.2023

DOI: 10.47183/mes.2023.019

Онкологические заболевания остаются одной из основных неинфекционных причин смертности взрослого населения и, по оценкам Всемирной организации здравоохранения, лидируют по показателям летальности в возрасте до 70 лет в 112 странах мира [1]. Среди наиболее распространенных типов злокачественных новообразований (ЗНО) по частоте выявления можно выделить рак молочной железы (РМЖ), немелкоклеточный и мелкоклеточный рак легкого (нмРЛ и мРЛ, соответственно), колоректальный рак (КРР), рак желудка (РЖ), рак печени (РП), рак простаты (РПЖ), рак шейки матки (РШМ), рак щитовидной железы (РЩЖ) и рак мочевого пузыря (РМП). К наиболее агрессивным по течению ЗНО можно отнести меланому, различные типы первичных опухолей ЦНС (нейробластомы, глиобластомы) и онкогематологические заболевания. К ЗНО с наибольшим числом летальных исходов относят РЛ, КРР, РП, РЖ, РМЖ, РПЖ, РШМ, рак пищевода, рак поджелудочной железы, и лейкемии [1]. ЗНО встречаются у людей разного возраста и пола, разных национальностей и профессий,

однако значительные роли в онкогенезе играют факторы наследственной предрасположенности, вредные привычки (например, табакокурение), а также факторы окружающей среды, такие как неблагоприятные производственные условия, существенно увеличивающие риск возникновения ЗНО [2]. Поэтому важное значение имеют мероприятия по раннему выявлению ЗНО в группах профессионального риска, адекватному выбору и реализации своевременного противоопухолевого лечения.

Для солидных типов ЗНО стадий I-III основной схемой лечения является хирургическая резекция опухоли с проведением адъювантной и/или неоадъювантной терапии [3]. Часто применяют комбинированную терапию: сочетание хирургического лечения с лучевой или химиолучевой терапией [3], равно как и сочетание с иммунотерапией, например, с терапией ингибиторами иммунных контрольных точек (ИКТ) [3, 4]. В частности, Управление по санитарному надзору за качеством пищевых продуктов и медикаментов США (FDA) по состоянию на

2022 г. одобрило применение семи ингибиторов ИКТ для каскада рецептора программируемой клеточной гибели PD-1/PD-L1: пембролизумаб, ниволумаб, дурвалумаб, атезолизумаб, авелумаб, цемиплимаб, достарлимаб [4].

Другим вариантом иммунотерапии ЗНО является применение так называемых дендритноклеточных вакцин (ДК-вакцин) [5, 6]. Считается, что клиническая эффективность ДК-вакцин связана с нацеливанием на иммуносупрессорные популяции клеток в опухолевом микроокружении с последующей индукцией иммуногенной гибели опухолевых клеток [7].

ДК участвуют в презентации антигенов, регуляции иммунного ответа, подавлении иммуносупрессорных Т-лимфоцитов и могут сенсибилизировать другие клеткиэффекторы врожденного противоопухолевого иммунитета [5, 6]. Среди ДК выделяют несколько субпопуляций, в зависимости от происхождения и рецепторов антигенов: миелоидные ДК, лимфоидные ДК, плазмоцитоидные ДК, клетки Лангерганса и ДК, полученные из моноцитов [5, 6]. ДК как звено противоопухолевого иммунного ответа участвуют в распознавании и презентации иммунокомпетентным клеткам НА — появившихся *de novo* в клетках ЗНО антигенов [5, 6]. Эту способность ДК, нагруженных ех vivo опухолевыми антигенами, рационально использовать далее для активации в организме человека CD4+-Tхелперных и CD8+-цитотоксических Т-лимфоцитов (ЦТЛ) и определять таким образом направленность иммунных реакций [8]. На сегодняшний день только препарат PROvenge, аутологичный клеточный продукт, состоящий из антигенпрезентирующих клеток, активированных рекомбинантным химерным белком РА2024, был одобрен FDA в 2010 г. для лечения РПЖ по результатам клинических исследований (КИ) фазы III (NCT00779402).

Поскольку опухолевые НА стимулируют специфический противоопухолевый иммунный ответ в организме пациента, в последние годы ведут разработку новых персонализированных терапевтических подходов в области создания неоантигенных вакцин (НА-вакцины) [9]. НА (наиболее специфичные для опухолевых клеток антигены) можно разделить на общие (образованные широко распространенными мутациями в онкогенах) и персонализированные (уникальные для опухоли конкретного пациента) [10]. Активно развиваются два подхода в иммунотерапии опухолей с помощью НА: пептидные вакцины и РНК-вакцины. Так, пептидные вакцины могут содержать смеси синтетических пептидов с адъювантами или дендритные клетки, нагруженные пептидами [11, 12].

Ограничения применения ДК-вакцин связаны с длительностью и ресурсоемкостью процесса их препаративного получения. Иногда по этой причине происходит прогрессирование заболевания, что снижает клиническую пользу от терапии, а кроме того, часть пациентов может не дожить до завершения курса [5, 13]. Высокая стоимость биологических стимуляторов, которые критически важны для корректной дифференцировки ДК и нагрузки их антигенами, тоже препятствует своевременному получению вакцин и их внедрению в клиническую практику [5, 9, 13]. Еще уместно отметить, что несмотря на достижение патоморфологических ответов и стабилизации заболевания в ответ на введение ДК-вакцин и фармакологическую безопасность для организма человека, существует объективная задача повышения их эффективности, которая может быть решена путем различных модификаций существующих вариантов вакцин и комбинированного применения с другими препаратами [5, 6].

Цель обзора — систематизация литературных данных о подходах в разработке кандидатных противоопухолевых препаратов на основе ДК- и НА-вакцин с точки зрения оптимизации методических и отдельных технологических аспектов их получения для преодоления вышеупомянутых ограничений. В настоящем обзоре рассмотрены также особенности взаимодействия ДК-вакцин с иммунными клетками человека и наиболее перспективные разработки на основе данных доклинических и клинических исследований (ДКИ и КИ соответственно).

Клинические испытания ДК- и НА-вакцин для терапии 3HO

По состоянию на декабрь 2022 г. в системе Clinical Trials [14] было найдено 410 и 96 записей о клинических исследованиях ДК- и НА-вакцин соответственно. Из всех КИ по изучению ДК-вакцин 191 КИ (46,58%) имело статус «завершено» (англ. completed), 45 КИ (10,97%) — «остановлено» (англ. terminated), 24 КИ (5,85%) — «временно приостановлено» (англ. withdrawn или suspended). Среди ста продолжающихся (англ. active) КИ, 32 КИ (7,80%) имели статус «набор пациентов завершен», 57 КИ (13,90%) — «идет набор участников», 11 КИ (2,68%) — «без набора участников». Для остальных 50 КИ (12,20%) статус неизвестен.

Среди успешно завершенных КИ противоопухолевых ДК-вакцин было проанализировано 29 исследований (86% КИ фазы II и 14% КИ фазы III). В табл. 1 представлены основные сведения о проведенных КИ (номер, название, фаза, статус, нозология, группы пациентов, схема применения ДК-вакцины, препараты в комбинации с ДК-вакцинами и т. д.). Распределение КИ, посвященных изучению безопасности, переносимости и клинической эффективности ДК-вакцин для терапии различных онкологических заболеваний, было следующим. К группе ЗНО стадии III можно отнести два КИ по изучению ДК-вакцин в монорежиме для лечения РПЖ. Еще в двух КИ изучали ДК-вакцины в комбинации с дазатинибом для лечения метастатической меланомы стадии III или глиомы на фоне темозоломида. К группе ЗНО стадии II можно отнести десять КИ ДК-вакцин, изученных в монорежиме, и 15 КИ, в которых ДК-вакцины применяли в комбинации с другими препаратами (чаще всего это было сочетание с IL2, темолозомидом или INFα). Распределение по частоте встречаемости ЗНО было следующим: глиома (пять КИ), меланома (три КИ), саркома (три КИ), рак простаты (три КИ), рак яичников и РМЖ — два КИ. Следует констатировать, что наибольшая доля исследований приходилась на комбинированное применение ДК-вакцин и ингибиторов ИКТ. Сведения о продолжающихся КИ фазы II и III представлены в табл. 2 и 3 соответственно.

Число КИ, зарегистрированных в системе ClinicalTrials и посвященных изучению НА-вакцин, было примерно в четыре раза меньше, чем ДК-вакцин. Из 96 КИ 11 были завершены, восемь остановлены, три временно приостановлены, 60 продолжаются и 14 имеют неизвестный статус. По аналогии с ДК-вакцинами, клиническую оценку НА-вакцин проводили, в основном, на фоне приема ингибиторов ИКТ, а охват ЗНО в КИ был практически идентичным. В единственном КИ фазы II (NCT03633110) была подтверждена безопасность и противоопухолевая эффективность НА-вакцины

ОБЗОР І ОНКОЛОГИЯ

Таблица 1. Основные результаты завершенных клинических испытаний ДК-вакцин. АБ — андрогенная блокада; ВБП — выживаемость без прогрессирования; ДК — дендритные клетки; ДК-вакцина — вакцина на основе дендритных клеток; КРР — колоректальный рак; НМРЛ — немелкоклеточный рак легкого; ОВ — общая выживаемость; РЛ — рак легкого; РМЖ — рак молочной железы; РЯ — рак яичников; ЧОО — частота объективного ответа

Название клинического испытания (КИ)	Фаза	Нозология	Число групп	Схема применения	Препараты в комбинации	Результаты КИ	Идентификатор КИ в ClinicalTrials.gov
Vaccine therapy in treating patients with metastatic prostate cancer that has not responded to hormone therapy	III	Рак простаты	2	127 участников. Опытная группа: 3 инфузии Sipuleucel-T с интервалом в 2 недели. Контрольная группа: ДК-вакцина, без активации РА2024	Нет	Медианы ОВ в опытной группе 25,9 месяцев vs 21,4 в группе плацебо. Было достигнуто 8-кратное превышение числа стимулированных Т-клеток в ответ на ДК-важцину в сравнении с контролем (16,9 vs 1,99; ρ < 0,001)	NCT00005947
Provenge treatment and early cancer treatment (PROTECT)	Ш	Рак простаты	2	176 участников. Опытная группа: 3 инфузии Sipuleucel-T с интервалом в две недели. Контрольная группа: ДК-вакцина, без активации PA2024	Нет	Не выявлено разницы параметров качества жизни в опытной и контрольной группах. 50-й процентиль уровня ПСА выше 3нг/мл составил 15 vs 12 месяцев в опытной и контрольной группах	NCT00779402
Dendritic cell vaccines + dasatinib for metastatic melanoma	III	Метастатическая меланома	2	15 участников. Внутрикожные инъекции препарата (доза 1 × 10 ⁷ клеток) вблизи лимфатических узлов на 1 и 15 день цикла. Когорта А – препарат ДК + дазатиниб (с первого дня цикла), когорта Б — препарат ДК + дазатиниб (с первого дня второго цикла — через 5 недель)	Дазатиниб	Из 13 участников КИ у 6 был достигнут специфический ответ Т-клеток на введение вакцины. Достигнуто 4 частичных ответа и две стабилизации заболевания. Остальные 7 участников не ответили на вакцинацию (прогрессирование заболевания). Когорта A vs когорта Б: ЧОО 66,7% против 28,6%, ОВ 15,45 vs 3,47 месяцев и выживаемость без прогрессирования (ВБП) 7,87 vs 1,97 месяцев	NCT01876212
Study of a drug [DCVax*-L] to treat newly diagnosed gbm brain cancer (GBM)	Ш	Глиома	2	Контрольная группа (темозоломид + подкожные инъекции DCVax-L). Опытная группа (темозоломид + аутологичные PBMC (плацебо). Инъекции (0, 10, 20, и 8, 16, 32, 48, 72, 96 и 120 недель)	Темозоломид	Подтверждена безопасность применения. Разница по выживаемости пациентов в группах пока не раскрыта	NCT00045968
A study of ICT-107 immunotherapy in glioblastoma multiforme (GBM)	11–111	Глиома	2	124 участника: от 18 до 80 лет. Первая группа (81) — терапия аутологичными ДК, вторая группа (43) — плацебо	Нет	Медиана ОВ: ДК-вакцина — 18 месяцев, плацебо — 16,7 месяцев. Медиана ВБП: ДК-вакцина — 11,2 месяцев, плацебо — 9 месяцев	NCT01280552
Dendritic cell vaccine study (DC/ PC3) for prostate cancer	Ш	Рак простаты	1	13 участников. Внутрикожная инъек- ция ДК-вакцины в монорежиме	Нет	Увеличение пролиферации Т-лимфоцитов в ответ на введение ДК-вакцины	NCT00345293
Vaccine therapy in treating patients with stage i, stage ii, or stage iii non-small cell lung cancer	II	НМРЛ	1	32 участника. Пациенты с гистологически подтвержденным НМРЛ I-IIIB стадии. 16 внутрикожных инъекций, 1 раз в месяц	Нет	Оценка иммуногенности: у 40% пациентов зафиксирован антиген-специфичный ответ на ДК-вакцину, у 40% — неспецифичный ответ	NCT00103116
Ovarian cancer vaccine for patients in remission	II	РЯ	3	63 участника. 6–8 внутрикожных инъекций в (предплечье и бедро) (доза 60 × 10° клеток). Группы: контроль, рандомизации	Нет	ВБП 13 vs 5 месяцев и ОВ 42 vs 26 месяцев в когортах ДК-вакцина vs контроль соответственно	NCT01068509
Safety and effectiveness of a vaccine for prostate cancer that uses each patients' own immune cell	Ш	Рак простаты	2	24 участника. Подкожное введение вакцины. Когорта 1: плацебо в течение 8 недель, затем ДК свыше 8 недель. Когорта 2: ДК свыше 8 недель	Нет	Способ приготовления ДК-вакцин влиял на эффективность активации Т-клеток при введении ДК-вакцин	NCT00289341
Vaccine therapy in treating patients with liver or lung metastases from colorectal cancer	=	KPP	2	13 участников. Когорта 1: внутрикожное или подкожное введение ДК-вакцины. Когорта 2: ДК-вакцина + GM-CSF	Нет	Двухгодичная ВБП слабо отличалась в когортах (47% и 55%). Скорость и величина иммунных ответов Т-клеток не различались статистически в когортах	NCT00103142
Ovarian cancer vaccine for patients who have progressed during the CAN-003 study (CAN-003X)	=	РЯ	1	9 участников. Три дозы ДК вводили в течение 4 недель, еще 3 дозы в течение последующих 12 недель, остальные 6 доз в течение последующих 44 недель	Нет	Данных по эффективности не представлено	NCT01617629
Vaccine for patients with newly diagnosed or recurrent low-grade glioma	II	Глиома	1	5 участников. Введение препарата на 0, 14, 28 день	Нет	Данных по эффективности не представлено	NCT01635283
Therapy to treat ewing's sarcoma, rhabdomyosarcoma or neuroblastoma	=	Саркома	2	44 участника. Когорта А — фон: введение истощенных по СD25 и 8Н9 аутологических лимфоцитов + ДК-вакцина. Когорта В — фон + рекомбинатный IL7 (введение на 0, 14, 28, 42 день)	Нет	У 57% пациентов были зафиксированы иммунные ответы при приеме IL7. Медианы ОВ составили 2,4 и 4,3 месяцев в когорте А и В, соответственно	NCT00923351
A phase II feasibility study of adjuvant intra-nodal autologous dendritic cell vaccination for newly diagnosed glioblastoma multiforme	=	Глиома	1	11 участников. Три дозы вакцины вводили в шейный лимфатический узел в двухнедельный интервал	Темозоломид, лучевая терапия	Активация CD4*-клеток коррелировала с выживаемостью пациентов. Медиана ВБП составила 9,5 (от 5 до 41) месяцев	NCT00323115
A pilot study of autologous t-cell transplantation with vaccine driven expansion of anti-tumor effectors after cytoreductive therapy in metastatic pediatric sarcomas	Ш	Саркома	1	42 участника. Внутримышечные инъекции ДК вакцины в дозе 1 × 10 ^s клеток каждые 6 недель	Индинавир (перорально), инфузии IL2, IL7	Т-клеточные ответы на уровне 60%, общая выживаемость в два раза выше при приеме ДК (73% vs 37%)	NCT00001566
DC vaccine combined with IL2 and IFNα-2a in treating patients with mRCC	II	Метастатический рак почки	1	18 участников. Индукционная тера- пия: инъекции в лимфатические узлы ДК-вакцины — день 0 и 14 на фоне IL2 (дни 1-5 и 15-19) и интерферона альфа (дни 1, 3, 5, 15, 17, и 19). Поддерживающая терапия: ДК-вакцина (дни 42, 70, и 98); IL2 — дни 43-47, 71-75, и 99-103; IFN-а дни 43, 45, 47, 71, 73, 75, 99, 101 и 103	IL2, интерферон альфа	Из 18 пациентов, общий ответ составил 50% с тремя полными ответами. Уровень циркулирующих CD4*-Т-регуляторных клеток имел сильную связь с исходом	NCT00085436
Vaccine therapy, tretinoin, and cyclophosphamide in treating patients with metastatic lung cancer	II	РЛ	1	24 участника. Трехкратное внутрикожное введение ДК вакцины каждые 14 дней, затем ежемесячно вводили остальные три дозы	Циклофосфа- мид, третиноин	Медиана общей выживаемости 8 месяцев. Медиана ВБП составила 1,7 месяцев. Из 14 пациентов у 5 была достигнута активация CD8'-Т-клеток на фоне вакцинации	NCT00601796
Vaccine therapy plus interleukin-2 in treating patients with stage III or stage IV melanoma	II	Меланома	2	40 участников. Когорта 1: ДК-вакцина. Когорта 2: пептиды, вводимые в виде эмульсии с GM-CSF и адъковантом Montanide ISA-51	IL2	Т-клеточные иммунные ответы в когорте 1 были у 11–13% пациентов, в когорте 2 — у 42–80%. ЧОО наблюдалась в когортах у 10% пациентов	NCT00003222

Таблица 1. Продолжение

						Выживаемость 67% пациентов без	
External beam radiation with intratumoral injection of dendritic cells as neo-adjuvant treatment for sarcoma	Ш	Саркома	1	17 участников. Три дозы ДК-вакцины (10 ⁷ клеток) вводили интратуморально в течение курса лучевой терапии	Лучевая терапия 50 Гр, 25 сеансов	выживаемист в 07-70 пациентов исс системных рецидивов в течение 2-8 лет. В некоторых случаях иммунологический ответ на введение ДК-вакцины коррелировал с клиническим ответом	NCT00365872
Vaccine therapy, trastuzumab, and vinorelbine in treating patients with locally recurrent or metastatic breast cancer	II	РМЖ	1	17 участников. ДК + GM-CSF	Винорелбин, Трастузумаб	Увеличение на 36% доли CD8⁺-клеток, продуцирующих цитокины	NCT00266110
Dendritic cell (DC)-based vaccines loaded with allogeneic prostate cell lines in combination with androgen ablation in patients with prostate cancer	Ш	Рак простаты	2	Когорта А. 3 месяца АБ, затем 3 месяца комбинации АБ + ДК-вакцина. Когорта Б: 3 месяца комбинации АБ + ДК вакцина, затем 3 месяца АБ	Андрогенная блокада	Данных по эффективности не представлено	NCT00970203
Dendritic cell/myeloma fusion vaccine for multiple myeloma	Ш	Множественная миелома	3	203 участника. Подкожное введение ДК-вакцины (3 × 10 ⁶ клеток) в верхнюю треть бедра в первый день каждого из 4 циклов поддерживаю- щей терапии леналидомидом	Леналидомид, GM-CSF, мелфалан	В когорте с ДК вакциной + Леналидомид + GM-CSF (68 пациентов): 16% полный ответ, 54% частичный ответ	NCT02728102
DC migration study for newly- diagnosed GBM (ELEVATE)	Ш	Глиома	3	64 участника. Курс лечения: 10 доз активированной ДК-вакцины (2 × 10 ⁷ клеток) вводили внутрикожно в паховую область	Темозоломид, Базиксимаб	Увеличение медианы ОВ пациентов 16,5 vs 23,8 месяцев при применении ДК-вакцины с адыовантом (дифтерийный анатоксин) в сравнении с ДК-вакциной без адыованта. ВБП существенно не менялась	NCT02366728
Study of gene modified immune cells in patients with advanced melanoma (F5)	=	Метастатическая меланома	1	14 участников. После курса химиотерапии, пациентам внутрикожно вводили 1 × 10° грансгенных цитолитических Т-лимфоцитов и 1 × 10° ДК, а также IL2 500,000 IU/m² уважды в день в течение 14 дней	IL2	Данных по эффективности не представлено	NCT00910650
A vaccine (CDX-1401) with or without a biologic drug (CDX-301) for the treatment of patients with stage IIB-IV melanoma	II	Меланома	2	60 участников. Опытная группа: (CDX-301, CDX-1401, poly-ICLC). Контрольная группа: (CDX-1401, poly-ICLC)	Poly-ICLC, Flt3L, цитокин	В опытной группе стимуляция иммунного ответа была у 53% пациентов против 38% в контрольной. Средний срок появления рецидива опухоли значимо не менялся (диапазон 360–390 дней)	NCT02129075
Vaccine therapy and 1-MT in treating patients with metastatic breast cancer	I–II	Метастатический РМЖ	1	44 участника. Внутрикожное введение 6 доз Ad.p53-DC на 1, 3, 5 и 10 неделе, и затем каждые 3 недели	Аd.p53-DC на 1, 3, 5 и 10 неделе,		NCT01042535
αDC1 vaccine + chemokine modulatory regimen (CKM) as adjuvant treatment of peritoneal surface malignancies	I-II	Мезателиома	1	64 участника. ДК-вакцину вводили в лимфатические узлы один раз за цикл в дозе 3 × 10° клеток + внутрикожная введение в такой же дозе	Целекоксиб, INFa-2b, ринтатолимод	Среднее время до прогрессирования заболевания — 16 месяцев, ОВ — 52 месяца. Была зафиксирована продукция хемокинов на фоне лечения	NCT02151448
Vaccination-dendritic cells with peptides for recurrent malignant gliomas	I-II	Глиома	1	22 участника. Схема лечения ДК-вакциной: первичное введение в лимфоузлы (1-ая неделя), 1-я бустерная фаза (1-3я неделя) + роly-ICLC, 2-я бустерная фаза (33-я неделя) + poly-ICLC	Poly-ICLC	Общая выживаемость: доза ДК (1 ×10°) + Poly-ICLC — (33 ДИ 14-37 месяцев), доза ДК (3 × 10°) + Poly-ICL — (13 ДИ 6–37 месяцев)	NCT00766753

на фоне приема пембролизумаба и ниволумаба. Из восьми прекращенных КИ три были прекращены из-за продолжительного времени разработки, а остальные пять — по причинам недостаточного финансирования.

Анализ сведений о КИ ДК-вакцин фазы I и II позволил выявить ряд проблемных моментов. Во-первых, основным фактором прекращения КИ является небольшое число включенных в него участников (обычно не более 20). Вовторых, сложность интерпретации полученных результатов обусловлена наличием разных схем противоопухолевой терапии в одном и том же КИ. В-третьих, специфический дизайн КИ, заключающийся в наличии одной когорты пациентов либо отсутствии рандомизации. Несмотря на достижение конечных точек безопасности и переносимости противоопухолевых вакцинных препаратов, следует отметить общую тенденцию умеренной эффективности ДК- и НА-вакцин в монорежиме, что определяет актуальность комбинированного применения с другими препаратами. Хотя есть исключения. Например, препарат для внутриопухолевого введения на основе ДК, полученный в присутствии интерферона — (IFNa) и гранулоцитарномакрофагального колониестимулирующего фактора (ГМ-КСФ), даже в отсутствие опухоль-ассоциированного антигена обеспечил высокие иммунологические ответы, а у некоторых субъектов на фоне низких доз ритуксимаба обеспечил полную регрессию фолликулярной лимфомы [15]. Важно, что комбинации ДК-вакцин с таргетными или иммунотерапевтическими препаратами продемонстрировали более высокие уровни эффективности, чем ДК-вакцины в монорежиме. Частота

объективных ответов (ЧОО) достигала 50%, а разница выживаемости без прогрессирования (ВБП) и/или общей выживаемости пациентов (ОВ) составляла до 100% в зависимости от схемы лечения.

Таким образом, ДК-вакцины обладают выраженным противоопухолевым эффектом, позволяющим достичь более высоких показателей общей выживаемости. Другая тенденция, которую можно выявить из анализа результатов КИ, заключается в позиционировании ДК- и НА-вакцин в качестве терапии «последнего выбора», что может быть причиной их низкой эффективности в КИ при лечении ЗНО поздних стадий. Альтернативно, стимуляция инфильтрирующих опухоль иммунных клеток и локального иммунного ответа имеет все причины оказаться не менее эффективной опцией и на ранних стадиях заболевания, когда необходимо предотвратить метастазирование.

Оптимизация процессов получения и применения биотерапевтических противоопухолевых вакцин

Возможности ускорения, снижения стоимости и упрощения процедуры получения ДК-вакцин

1. Варианты ускорения процедуры получения ДК-вакцин

Первым подходом к ускорению получения ДК-вакцин является использование нуклеиновых кислот (НК) для нагрузки дендритных клеток [9]. Наработка НК — менее длительный процесс по сравнению с синтезом целевых пептидов, а процедура очистки НК менее трудоемкий

процесс по сравнению с очисткой пептидов или полипептидов. НК отличаются большей стабильностью по сравнению с пептидами и сами являются адъювантами, способными активировать провоспалительные молекулярные пути с участием toll-подобных рецепторов (TLR), ассоциированных с активацией врожденного иммунитета [16].

Второй подход модификация **V**СЛОВИЙ культивирования клеток. Например, перенос клетокпредшественников костного мозга мышей в монослои мышиных стромальных клеток ОР9, экспрессирующих дельта-подобный лиганд Notch-1 (OP9-DL1), после трех дней культивирования с лигандом FMS-подобной тирозинкиназы 3 (FLT3L) привел к тому, что клетки экспрессировали мышиные маркеры (CD103, CD24, DEC205 и CD8α) миелоидных ДК — популяцию, которая не возникала только при культивировании с FLT3L. Транскрипционный профиль экспрессии генов в таких ДК был наиболее близок к аутологичным ДК селезенки, при этом увеличивалась выживаемость животных, что могло быть связано с усилением миграции лимфоцитов к ЗНО [6]. Совместное культивирование человеческих гемопоэтических стволовых и прогениторных клеток (HSPC) и OP9-DL1 позволило увеличить в 20 раз выход ДК всех типов по сравнению с классическими методами культивирования [17].

Третий подход заключается в стимуляции клеточной культуры различными цитокинами, например, ГМ-КСФ [17, 18]. Транскрипционные профили полученных ДК были практически идентичны первичным ДК, а сами клетки демонстрировали нормальные цитокиновые реакции на агонисты TLR, в том числе секрецию IL12, TNF и IFNу, и эффективно индуцировали пролиферацию CD4+- и CD8+-Т-лимфоцитов [17, 18].

Четвертый подход реализован путем применения технологий генетического редактирования. Так, для создания ДК-вакцин использовали методы вирусной трансдукции [19], PHK-интерференции [20] и систему редактирования генома CRISPR/CRISPR-Cas9 [21]. Все методы показали свою высокую эффективность в ДКИ и, теоретически, могут быть масштабированы для препаративного получения ДК-вакцин.

Также описан подход для ускорения производства ДК-вакцин с использованием безвекторного метода по технологии Cell Squeeze®, которая основана на продавливании целевых молекул через поры в мембране, вызванные временным нарушением ее целостности [22]. Показано, что данная технология нагрузки ДК применима ех vivo и подходит для транспортировки различных антигенов в цитозоль [23].

2. Варианты снижения стоимости процедуры получения ДК-вакцин

Среди возможных подходов в снижении расходов на получение ДК-вакцин можно выделить вариант на основе экзосом, полученных из ДК (DEX). Получение DEX оценивают как более технологически доступную и менее затратную процедуру по сравнению с получением классических ДК-вакцин. Исследования in vitro и in vivo показали способность DEX активировать CD4+- и CD8+-Т-клетки и стимулировать эффективные антигенспецифичные ответы цитотоксических лимфоцитов. Однако в нескольких КИ не был достигнут требуемый уровень противоопухолевой эффективности, что ставит под вопрос перспективы применения DEX [24]. Возможным

вариантом повышения эффективности DEX является предварительная обработка ДК клеток интерфероном — (IFNy), что приводит к повышению уровня экспрессии *CD40*, *CD80*, *CD86* и *CD54*. Однако данный подход, зарекомендовавший себя в ДКИ [25], не был столь же эффективным в КИ фазы II [26].

3. Варианты упрощения процедуры получения ДК-вакцин

Создание ДК-вакцин на основе выделенных первичных ДК из периферической крови пациента существенно проще генерации ДК ex vivo, однако применимость такого подхода ограничена низким содержанием ДК во фракции моноцитов периферической крови (менее 1%) [27]. Невысокое содержание циркулирующих в крови ДК было обнаружено у пациентов с меланомой [28] и РМЖ [29], в то время как нарушения в дифференцировке ДК отмечены в моделях РМЖ и рака поджелудочной железы [30] — соответственно, у пациентов с данными типами ЗНО низкая эффективность выделения ДК из периферической крови. Поскольку успешное применение данного подхода пока продемонстрировано только *in vivo* на моделях мышей с ксенотрансплантацией клеток В16/F10 (меланома), B16-OVA (меланома), MC38 (рак толстой кишки) и B16-Flt3L (меланома) [31], то перспективы разработки вакцины из ДК типа I для большинства опухолей пока представляются мало реализуемыми.

Возможности комбинированного применения противоопухолевых вакцин

Факторы роста

Комбинация ДК-вакцин и факторов роста призвана усилить антиген-специфичный ответ. ГМ-КСФ наиболее часто используют в комбинации с ДК-вакцинами ввиду его функций ростового фактора кроветворения и иммуномодулятора. ГМ-КСФ применяли в качестве низкотоксичного адъюванта при терапии ДК- или НА-вакцинами, содержащими пептиды [32]. Описан еще один подход, основанный на применении ДК-вакцин и фактора роста FLT3L. Так, в присутствии FLT3L на моделях мышей было выявлено существенное увеличение генерации аутологичных ДК, в том числе плазмоцитоидных ДК. Предполагают, что повышение функциональной активности зрелых ДК в присутствии FLT3L опосредовано сигнальными путями с участием фосфоинозитид-3-киназы PI3K и киназы mTOR [33].

ИКТ

Комбинированное применение ингибиторов ИКТ и ДК-вакцин приводит к активации Т-лимфоцитов и NK-клеток и снижению иммуносупрессивной активности регуляторных Т-клеток [5, 34], и, таким образом, к повышению эффективности ДК-вакцин. ДК-опосредованная активация NK-клеток и уδ-Т-лимфоцитов [35, 36] может, в свою очередь, повышать эффективность ингибиторов ИКТ. Синергетический противоопухолевый эффект комбинированного применения ниволумаба и ДК-вакцины был установлен в отношении РМЖ, миеломы, меланомы, рака легких, лимфомы и глиобластомы [37], при этом доказана безопасность ДК-вакцины для пациентов и отмечено небольшое число побочных эффектов, связанных с приемом ниволумаба [37].

REVIEW I ONCOLOGY

Таблица 2. Открытые клинические испытания эффективности ДК-вакцин и НА-вакцин (с завершенным набором пациентов). Серым цветом отмечены КИ комбинированных вакцин (ДК- и НА-вакцин). АТ — адъювантная терапия; ГЦР — гепатоцеллюлярный рак; ДК — дендритные клетки; ДК-вакцина — вакцина на основе дендритных клеток; Ж — женщины; КРР — колоректальный рак; л.у. — лимфатические узлы; М — мужчины; МРЛ — мелкоклеточный рак легкого; НА — неоантигены; НМРЛ — немелкоклеточный рак легкого; ОГиШ — опухоль головы и шеи; ОМЛ — острый миелоидный лейкоз; РМЖ — рак молочной железы; РЯ — рак яичников; ХМЛ — хронический миелоидный лейкоз

Название	Состав вакцины	Фаза	Нозология	Набор пациентов	Схема применения вакцины	Препараты	Идентификатор
нет	ДК + PHK	III	Увеальная меланома	200 человек,	Группа A — 8 порций вакцины в течение 2 лет,	в комбинации нет	КИ в ClinicalTrials.gov NCT01983748
ADCTA-SSI-G1	ДК + опухолевые клетки	III	Мультиформная глиобластома	(18–75), М и Ж 118 человек (18–70), М и Ж	группа Б — контроль 10 доз: 2-4 × 10° клеток для 1-й дозы (двойная доза) и 1-2 × 10° клеток для	нет	NCT04277221
DEN-STEM	ДК + мРНК опухолевых стволовых клеток, сурвивина или hTERT	III	Глиобластома	60 человек, (18–70), М и Ж	2-10-й дозы, 3 вакцины 2 раза в неделю Внутрикожная инъекция ДК, через 4 недели до 6 циклов темозоломида	Адъювантный темозоломид	NCT03548571
GIMI-IRB-19006	дк	Ш	Солидные типы опухолей	100 человек, (18–80), М и Ж	Подробно не представлено	нет	NCT04085159
CCRG12-001	дк	Ш	ОМЛ	130 человек, (18+), М и Ж	Вакцинация ДК, возможно сочетание с химиотерапией (если она была назначена ранее)	нет	NCT01686334
нет	дк	II	ОМЛ	75 человек, (18+), М и Ж	Подробно не представлено	нет	NCT03059485
ADCV01	дк	Ш	Глиобластома	24 человека, (20–75), М и Ж	Всего 10 доз (1 мл/доз; 2 ± 0,5 × 107 клеток/доз) АDCV01 будут вводить пациентам, отнесенным к исследовательской группе. АDCV01 будут вводиться в двусторонние подмышечные подкожные регионарные л.у. (половина объема примерно 0,5 мл ADCV01) один раз в неделю для первых 4 доз, а следующие 2 процедуры будут вводиться раз в две недели. Последние 4 процедуры будут проводиться каждые 4 недели	нет	NCT04115761
нет	ДК с опухолевым лизатом (в концентрации 1 × 10°)/или белки WT1 и MUC1 (для тех пациентов, у кого определенный тип HLA (HLA-A2)) + незрелые ДК (в нагрузке с белком-носителем – гемоцианин лимфы улитки (КLH))	Ш	РЯ	36 человек, (18+), Ж	Три инъекции в паховые области с двухнедельными интервалами (6 недель)	нет	NCT00703105
DENDR1	ДК + опухолевый лизат	II	Глиобластома	76 человек, (18–70), М и Ж	4 вакцины каждую вторую неделю (вакцины I, II, III, IV), еще 2 ежемесячные вакцины (вакцины V, VI) и заключительная вакцина (вакцина VII) через 2 месяца после шестой. Инъекции I, V, VI и VII будут содержать 10 млн ДК + опухолевый лизат, в то время как другие инъекции будут состоять только из 5 млн клеток	нет	NCT04801147
IRST153.04	ДК + опухолевый гомогенат	Ш	мКРР	19 человек, (19+), М и Ж	Каждая доза вакцины состоит из 1 × 10 ⁷ ДК + опухолевый гомогенат	нет	NCT02919644
IRST100.42	ДК + опухолевый гомогенат	Ш	ОГиШ, нейроэндо- кринные опухоли, сар- кома мягких тканей	51 человек, (18+), М и Ж	7–14 × 10 ⁸ ДК + опухолевый гомогенат, введенные внутрикожной инъекцией (день 1)	нет	NCT04166006
HER2 DC1	HER2-сенсибилизированные ДК	Ш	РМЖ, НЕВ2+ РМЖ	60 человек, (18+), Ж	Интранодальные инъекции под УЗ контролем, каждая доза будет состоять из 1,0–2,0 × 10 ⁷ клеток и будет вводиться в 1 правый и 1 левый паховые л.у.	нет	NCT03630809
CSTI571ADE60	ДК + пептиды из bcr/abl, WT-1 + протеиназа-3	Ш	хмл	30 человек, 18–80, М и Ж	Десять вакцинаций в течение 26 недель с использованием 10 × 10 ⁶ свежеразмороженных ДК, внутрикожные инъекции (объем 1–2 мл)	нет	NCT02543749
IOR-IISML42037	дк	П	МРЛ	20 человек, (18+), М и Ж	Внутрикожно (макскимум 6 доз) на 1, 3, 6, 9, 21, 33 неделях	Атезолизумаб, Карбоплатин	NCT04487756
DC1	дк	Ш	РМЖ (I-III стадии), НЕR2+ РМЖ	110 человек, (18+), Ж	Еженедельно путем интранодальных инъекций с 1 по 6 недели (окно 8–21 день между вакцинами). Бустерные вакцины будут веодиться с интервалом примерно в 3 месяца на 6, 9 и 12 месяц (с интервалом +/– 1 месяц)	WOKVAC vaccine	NCT03384914
MSDCV	дк	Ш	ГЦР	600 человек, (18–70), М и Ж	1 раз в 4 недели в течение 0-20 недель, около 5×10^7 клеток за раз, внутривенно, всего 6 раз	Цикло- фосфамид (Эндоксан)	NCT04317248
MC1685	дк	Ш	Лимфома	44 человек, (18+), М и Ж	Терапия дендритными клетками на 2-й, 8-й и 15-й дни 2-го и 3-го циклов и на 2-й день 4-го и 5-го циклов	Пембро- лизумаб, 13-валентная пневмокок- ковая конъ- югированная вакцина	NCT03035331
CA209-7R9	ДК + НА	II	ГЦР, КРР с метастазами в печени	60 человек, (21+), М и Ж	10 доз вакцины будут вводиться внутрикожно одновременно с АТ ниволумабом	Ниволумаб (Опдиво)	NCT04912765
IRST172.02	ДК + опухолевый лизат/гомогенат	=	Злокачественная меланома кожи III и IV стадии	24 человек, (18–70), М и Ж	Внутрикожная вакцина на 1, 4, 6 и 8 неделях во время индукционной фазы и каждые 4 недели во время поддерживающей фазы, максимум до 14 доз вакцины (за каждой дозой следует введение IL2 3 MU в день)	IFN-α	NCT01973322
CCRG13-002	ДК + мРНК WT1	=	Злокачественная мезотелиома плевры	20 человек, (18+), М и Ж	4 внутрикожных введения 8–10 × 10 ⁶ ДК+ мРНК WТ1; на 14-й день +/– 3 дня после начала каждого цикла химиотерапии	Препараты платины/ Пеметрексед	NCT02649829
нет	ДК + стволовые клетки А2В5+	Ш	Глиома, мультиформная глиобластома	100 человек, (18–70), М и Ж	8-10 × 10 ⁸ ДК вводятся внутрикожными инъекциями в 0,5 мл фосфатно-солевого буфера в области плеч возле задней части шеи для облегчения транспорта ДК в шейные л. у.	Темозоломид	NCT01567202

Таблица 2. Продолжение

	,						
MG-7-DC	ДК + антиген MG-7	II	Рак желудка	45 человек, (18–80), М и Ж	В 1, 8, 15, 21, 28, 35 дни будет сделано шесть подкожных инъекций ДК-вакцины; 1–3 × 10° клеток	Синтилимаб	NCT04567069
CCRG14-001	ДК + мРНК WT1	II	Мультиформная глиобластома	20 человек, (18+), М и Ж	Внутрикожная вакцинация ДК + мРНК WT1, еженедельно (+/- 1 день) в течение 3 недель	Темозоломид	NCT02649582
GlioVax	ДК + опухолевый лизат	П	Глиобластома	136 человек, (18+), М и Ж	Вакцинация ДК + опухолевый лизат (7x, 2-10 × 10° ДК каждая, внутрикожная инъек- ция, еженедельно 11-14, 17, 21, 25 недели)	Темозоломид	NCT03395587
нет	ДК + IL-12	П	Глиобластома	10 человек, (18–75), М и Ж	Внутрикожно рядом с шейным л. у. после хирургического вмешательства с последующей лучевой терапией (2 ГР в сутки в течение 30 дней)	Темозоломид	NCT04388033
pp65 DC	ДК + мРНК pp65-shLAMP + GM-CSF	II	Глиома, мультиформная глиобластома	175 человек, (18+), М и Ж	Вводят под кожу на 22–24 день после первого курса темозоломида, затем с интервалом в 2 недели. Дозы 4–10 будут вводиться на 22–24 день каждого цикла темозоломида. Дозы будут продолжать до тех пор, пока в общей сложности не будет 10 или до прогрессирова- ния или неприемлемой токсичности	Анатоксин дифтерийно- столбнячный	NCT02465268
PDC*lung01	ДК + синтетический пептид (NY-ESO-1, MAGE-A3, MAGEA4, Multi-MAGE, SURVIVN, MUC1) или + пептид, полученный из антигена Melan-A	П	нмел	64 человек, (18+), М и Ж	В когортах А1 (когорта с низкой дозой) и А2 (когорта с высокой дозой) пациентов с НМРЛ будут лечить низкой дозой/высокой дозой PDC*(шод)1, вводимой последовательно подкожно, а затем внутривенно. В когортах В1 и В2 первая инъекция PDC*(шод)1 начнетох в течение 48 ч после первой инфузии анти-PD-1. Четвертая инъекция PDC*(шод)1 будет произведена в течение 48 ч после инфузии второго цикла анти-PD-1	Алимта, китруда	NCT03970746
нет	Fit3L/CDX-301 + Poly-ICLC	II	Неходжкинская лимфома, метастатический РМЖ, плоскоклеточная ОГиШ	56 человек, (18+), М и Ж	200 мг внутривенной инфузии в течение 30 мин пембролизумаб (Китруда), затем ДК совместно с Flt3L	Китруда, хилтонол	NCT03789097
нет	ДК + опухолевый лизат	Ш	Детская глиобластома	25 человек, (3–21), М и Ж	4 еженедельных внутрикожных инъекции ДК + опухолевый лизат, с последующими 3 ежемесячными бустер-вакцинами с опухолевым лизатом и дополнительными бустер-вакцинами каждые три месяца	Цикло- фосфамид (Эндоксан), ниволумаб, ипилимумаб	NCT03879512
Pro00082570	ДК + мРНК CMV pp65-LAMP	II	Глиобластома	112 человек, (18+), М и Ж	2 × 10° ДК вводят внутрикожно и билатерально в паховую область (поровну делят на обе паховые области). Пациенты получат в общей сложности до 10 доз ДК-вакцины	Темозоломид, анатоксин дифтерийно- столбнячный, варлилумаб	NCT03688178
нет	ДК + мРНК WT1	П	Глиома высокой степени злокачественности, диффузная внутренняя глиома моста	10 человек, (1–17), М и Ж	 Индукционная иммунотерапия: внутрикожная вакцинация ДК + мРНК WT1, еженедельно (-1 день, +2 дня) в течение 3 недель, начиная с ≥ 1 недели после лучевой терапии. 2) Индукционная иммунотерапия: внутрикожная вакцинация ДК+мРНК WT1, еженедельно (-1 день, +2 дня) в течение 3 недель, начиная с ≥ 4 недель после афереза 	Темозоломид	NCT04911621
нет	ДК + GSC-DCV	II	Глиобластома	40 человек, (18–70), М и Ж	Каждые 3 недели при отсутствии прогрес- сирования заболевания или неприемлемой токсичности	Камрелизумаб	NCT04888611
GCO 13-1347	Fit3L + Poly-ICLC	II	В-клеточная лимфома низкой степени злокачественности	21 человек (18+), М и Ж	Внутриопухолевые инъекции на 1–5 и 8–11 день, и внутриопухолевая инъекция Poly-ICLC еженедельно, неделя 2–8	Хилтонол	NCT01976585

NK-клетки

Еще одним многообещающим подходом является комбинированное применение противоопухолевых ДК-вакцин и препаратов на основе NK-клеток. В микроокружении опухоли NK-клетки могут продуцировать ряд хемокинов, которые положительно влияют на активность ДК, а также фактор роста FLT3L, увеличивающий генерацию аутологичных ДК [38]. Помимо этого, активированные NK-клетки могут уничтожать незрелые ДК и индуцировать адаптивный иммунный ответ во вторичных лимфоидных органах. Зрелые ДК выделяют цитокины (прежде всего IL2, IL12, IL18), которые стимулируют NK-клетки продуцировать IFNy, TNFα либо ГМ-КСФ, что ускоряет созревание ДК [39].

Модификации ДК- и НА-вакцин

ДК-вакцины

Современное направление разработки противоопухолевых вакцин — использование таргетированного подхода на основе опухоль-ассоциированных антигенов (ОАА). Среди них можно выделить гиперэкспрессированные антигены,

антигены нормальной дифференцировки и антигены опухолевых стволовых клеток, а также НА. В качестве действующего компонента в подобной вакцине может выступать пептид, химерный белок, ДНК или РНК [16].

Один из подходов в модификации ДК-вакцин заключается в использовании наночастиц, которые легко поглощаются ДК путем эндоцитоза и могут выступать как носитель для НК либо пептидов [32]. В этом контексте, наночастицы обладают определенными преимуществами: иммуногенностью и способностью перемещаться по лимфатическим сосудам, если их размер составляет менее 200 нм. Опухолевые антигены могут быть конъюгированы с наночастицами путем адсорбции, инкапсуляции, химической конъюгации и самосборки [32].

Другой перспективный подход в модификации ДК-вакцин — применение технологии генетического перепрограммирования соматических клеток путем индукции экспрессии ключевых факторов клеточной дифференцировки. Более других для данной методики подходят моноцитарные ДК (мДК). Например, технология «SmartDC» позволяет перепрограммировать аутологичные CD14*-моноциты с помощью лентивирусного вектора, несущего гены, которые кодируют ГМ-КСФ, IL4 и TRP2

REVIEW I ONCOLOGY

Таблица 3. Открытые клинические испытания эффективности ДК-вакцин (незавершенный набор пациентов). *Серым цветом* отмечены КИ комбинированных вакцин (ДК- и НА-вакцин). ДК — дендритные клетки; ДК-вакцина — вакцина на основе дендритных клеток; Ж — женщины; КРР — колоректальный рак; л.у. — лимфатические узлы; М — мужчины; МРЛ — мелкоклеточный рак легкого; НА — неоантигены; ОМЛ — острый миелоидный лейкоз; РМЖ — рак молочной железы; РЯ — рак яичников

Название вакцины	Состав вакцины	Фаза КИ	Нозология	Пациенты	Схема применения вакцины	Препараты в комбинации	Идентификатор КИ в ClinicalTrials.gov
NL55823.000.15	ДК + НА	III	Меланома	210 человек, (18+), М и Ж	Максимум 3 цикла, каждый из которых состоит из 3 интранодальных инъекций ДК (3–8 × 10 ⁸)	нет	NCT02993315
DCP-001	дк	Ш	ОМЛ	20 человек, (18+), М и Ж	Низкая доза — пациенты, получающие 4 двухнедельные вакцины клетками 25Еб/авкцинация DCP-001 и 2 ревакцинации клетками 10Еб/авкцинация. Высокая доза — пациенты, получающие 4 двухнедельные вакцины клетками 50Еб/вакцинация DCP-001 и 2 ревакцинации клетками 10Еб/вакцинация DCP-001 и 2 ревакцинация и	нет	NCT03697707
нет	дк	Ш	ОМЛ	63 человека, (18+), М и Ж	2–3 дозы вакцины с интервалом в 4 недели	нет	NCT01096602
DC-005	ДК + мРНК опухоле- вых клеток, сурвивина или hTERT	Ш	Рак простаты	30 человек, (18-75), М	Подробно не представлено	нет	NCT01197625
нет	ДК + пептид TARP	Ш	Рак простаты	40 на 2015 год (фактически, на 2020 год 14) человек, (18+), М	20 × 10° жизнеспособных клеток/доза, вводили внутрикожно на 3, 6, 9, 12, 15 и 24 неделе	нет	NCT02362464
нет	ДК + total tumor RNA (ttRNA)	Ш	Медуллобластома	26 человек, до 30 (дети и взрослые), М и Ж	1 × 10 ⁷ внутрикожной инъекцией каждые 2 недели, всего 3 дозы	нет	NCT01326104
AV-GBM-1	ДК + опухоль-ассоци- ированные антигены (AV-GBM-1)	Ш	Глиобластома	55 человек, (18–70), М и Ж	Подробно не представлено	нет	NCT03400917
нет	ДК + GM-CSF	Ш	Рак почки	38 человек, (18+), М и Ж	3 вакцины с интервалом в 3 недели	нет	NCT00458536
нет	ДК + НА	II	KPP	25 человек, (18–75), М и Ж	Подробно не представлено	нет	NCT01885702
TLPLDC	ДК + частицы клеточ- ной стенки дрожжей + опухолевый лизат	II	Меланома	184 человек, (18–99), М и Ж	6 флаконов с разовой дозой для внутрикожных инъекций х 3 ежемесячно с последующими бустер- ными инъекциями через 6, 12 и 18 месяцев в одну и ту же область дренирования лу. (предпочтительно в переднюю поверхность бедра)	нет	NCT02301611
нет	ДК + мРНК WT1	Ш	ОМЛ	5 человек, (18–70), М и Ж	4 дозы, раз в 2 недели	нет	NCT03083054
нет	ДК + GM-CSF	II	РЯ, Первичный рак брюшины, рак маточной трубы	23 человека, (18+), Ж	Вводится подкожно 1 раз в 3 недели	Имиквимод	NCT00799110
нет	ДК + белок NY-ESO-1	II	ЗНО без уточнений	6 человек, (16+), М и Ж	Пациенты могут получить 3 дополнительные дозы петтидной вакцины на основе дендритных клеток NY-ESO-1 (157–165) после 90-го дня терапии	Флударабин фосфат, Циклофос- фамид	NCT01697527
нет	ДК + опухолевый лизат	II	Глиомы, глиобластома	60 человек, (18–70), М и Ж	Внутримышечная инъекция ДК-вакцины вместе с опухолевым лизатом (у всех). В 1 когорте — дополнительно нанесение плацебо-крема, в вакцине дополнительно физ. раствор, в 2 когорте — в вакцине дополнительно резиквимод, в 3 когорте — в вакцине дополнительно резиквимод, в 3 когорте — в вакцине дополнительно усилтонол	Резиквимод, Хилтонол	NCT01204684
Ad.p53-DC	ДК + p53	II	МРЛ	14 человек, (18+), М и Ж	4 цикла по 21 день: участники получат вакцину р53 в дни 1 и 15 цикла 1, а затем еще раз в день 8 цикла 2. Поддерживающая имкунотерапия, начинающаяся в день 1 цикла 5: вакцина р53 три дополнительных раза (каждые 4 недели в течение 12 недель)	Ниволумаб, Ипилимумаб	NCT03406715
нет	ДК + CT-011	Ш	Множественная миелома	35 человек, (18+), М и Ж	Вакцинация ДК/миеломы проводится через 1–3 месяца после аутологичной трансплантации. Вакцинация проводится с интервалом в 6 недель	CT-011	NCT01067287
нет	ДК + цитокины	II	РМЖ	400 человек, (18–75), М	4 цикла лечения DC-CIK (каждый год)	Капецитабин	NCT02491697
нет	Точный состав не указан	Ш	Рак простаты	19 человек, (18+), М	Внутрикожная инъекция 6 раз каждые 2 недели, затем 9 раз каждые 4 недели	Ниволумаб	NCT03600350
BVAC-C	Аутологичные В-клетки и моноциты, трансфектированные геном ВПЧ Е6Е7	II	Новообразования шейки матки	32 человека, (20+), Ж	BVAC-C внутривенно в инъекциях на 0, 4, 8 неделе, затем на 0, 4, 8, 12 неделе. После в комбинации с топотеканом на 0, 4, 8, 12 неделе	Топотекан	NCT02866006
нет	ДК + IL2	Ш	Меланома	1230 человек, (12+), М и Ж	От 1 × 10 ⁷ до 2,5 × 10 ⁸ ДК с пептидом МАRT-1 внутривенно в течение 20–30 мин, примерно через 4 ч после введения Т-клеток	Флударабин фосфат, цикло- фосфамид, IL-2	NCT00338377
нет	ДК + опухолевые белки	Ш	Меланома (III-IV стадии)	7 человек, (18+), М и Ж	Пациентам вводят зрелые ДК в 1-й или 2-й день 2-го и 3-го курсов после воздействия низкой температурой	Пембролиз- умаб	NCT03325101
нет	ДК + пептиды NY-ESO-1 и Melan-A/ MART-1	II	Меланома	36 человек, (18+), М и Ж	Введение 100 мкг/мл пептида (NY-ESO-1 и Melan-A/MART-1) + от 10 до 15 × 10° ДК на пептидный антиген (NY-ESO-1 и Melan-A/MART-1) (всего не болое 50 × 10° клеток)	Хилтонол, Монтанид	NCT02334735

(допахромтаутомеразу). Трансдукция вирусным вектором запускает процесс дифференцировки моноцитов в TRP2+ мДК, при этом технология «SmartDC» является более простой и менее времязатратной по сравнению с классическим получением ДК-вакцин [19].

НА-вакцины

Существует ряд разработок в области алгоритмов машинного обучения и нейронных сетей, которые помогают достаточно точно идентифицировать НА пациента

и предсказать белковую (пептидную) структуру [9]. Информацию об идентифицированных или предсказанных опухолевых НА систематизируют в специализированных базах данных, например, dbPepNeo [40]. Однако далеко не все опухолевые НА можно использовать для разработки НА-вакцин. Необходимо принимать во внимание такие показатели НА, как чужеродность, клональное распределение, представленность на молекулах главных комплексов гистосовместимости I и II (МНС-I, МНС-II), сродство рецепторов Т-лимфоцитов к НА и наличие драйверных мутаций в гене, кодирующем НА [41]. Известно, что эффективность НА-вакцин в значительной мере обусловлена ОМН (англ. tumor mutational burden опухолевая мутационная нагрузка, которая соответствует количеству мутаций на участок молекулы ДНК длиной 1 млн пар нуклеотидов), но может быть ограниченной в связи с низким значением ОМН в ряде ЗНО. Следует напомнить, что ОМН считается предиктивным биомаркером только для меланомы и НМРЛ [41, 42]. Отмечено, что выделенные либо культивированные ДК из крови пациента относительно легко можно нагрузить НА посредством рутинных процедур: электропорации или лентивирусной трансдукции [43], что способствует разработке смешанных ДК-НАвакцин, которые уже показали свою противоопухолевую эффективность в ДКИ на моделях РПЖ, РМЖ, НМРЛ, рака толстой кишки и карциномы Меркеля, а некоторые подобные вакцины исследуют в КИ (табл. 2).

ЗАКЛЮЧЕНИЕ

ДК- и НА-вакцины представляют собой интенсивно разрабатываемую ветвь высокотехнологичных

биотерапевтических противоопухолевых препаратов для персонифицированного применения. Поскольку отдельные технологические аспекты получения ДК- и НА-вакцин характеризуются значительной длительностью, высокими показателями трудо- и ресурсоемкости, актуальной остается оптимизация доклинических разработок, направленных на ускорение, снижение стоимости и упрощение процедур получения ДК- и НА-вакцин, что значительно увеличит масштаб будущего клинического применения последних.

Перспективным и многообещающим представляется подход с нацеливанием вакцин на опухолевые стволовые клетки (ОСК), в том числе на их НА. Согласно ряду исследований, опухоли с агрессивным фенотипом могут содержать значительную популяцию ОСК, которые обусловливают высокий пролиферативный потенциал и прогрессирование заболевания [44]. Однако для усовершенствования данного подхода требуется более детальное изучение молекулярно-генетического профиля ОСК и спектра специфичных биомаркеров ОСК.

Поскольку противоопухолевая эффективность ДК- и НА-вакцин показана в отношении нескольких одинаковых ЗНО, то перспективным направлением следует считать клиническую оценку смешанных (комбинированных) неоантигенно-дендритноклеточных вакцин, но пилотные результаты подобных КИ пока не опубликованы.

Как следует из анализа ландшафта завершенных и активных КИ, сочетание ДК-вакцин и ингибиторов ИКТ на сегодняшний день демонстрирует наибольшую противоопухолевую эффективность и приемлемый уровень безопасности и переносимости для пациентов с солидными ЗНО.

Литература

- Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortali-ty worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2021; 71 (3): 209–49.
- 2. Ершов П. В., Веселовский Е. М., Константинова Ю. С. Вклад наследственности и совокупности эндогенных и экзогенных факторов риска в развитие рака желудка. Медицина экстремальных ситуаций. 2020; (4): 75–89.
- 3. Hirakawa A, Asano J, Sato H, Teramukai S. Master protocol trials in oncology: review and new trial designs. Contemporary clinical trials communications. 2018; 12: 1–8.
- Upadhaya S, Neftelinov ST, Hodge J, Campbell J. Challenges and op-portunities in the PD1/PDL1 inhibitor clinical trial landscape. Nat Rev Drug Discov. 2022; 21 (7): 482–3.
- Yu J, Sun H, Cao W, Song Y, Jiang Z. Research progress on dendritic cell vaccines in cancer immunotherapy. Experimental Hematology & Oncology. 2022; 11 (1): 1–22.
- Perez CR, De Palma M. Engineering dendritic cell vaccines to improve cancer immunotherapy. Nature communications. 2019; 10 (1): 1–10.
- Belderbos RA, Aerts JGJV, Vroman H. Enhancing dendritic cell therapy in solid tumors with immunomodulating conventional treatment. Mol Ther Oncolytics. 2019; 13: 67–81.
- 8. Марков О. В., Миронова Н. Л., Власов В. В., Зенкова М. А. Противоопухолевые вакцины на основе дендритных клеток: от экспериментов на животных моделях до клинических испытаний. Acta naturae. 2017; 9 (34): 29–41.
- Reynolds CR, Tran S, Jain M, Narendran A. Neoantigen cancer vaccines: generation, optimization, and therapeutic targeting strategies. Vaccines. 2022; 10 (2): 196.

- Лебедева Е. С., Атауллаханов Р. И., Хаитов Р. М. Вакцины для лечения злокачественных новообразований. Иммунология. 2019; 40 (4): 64–76. DOI: 10.24411/0206-4952-2019-14008.
- 11. Барышникова М. А., Кособокова Е. Н., Косоруков В. С. Неоантигены в иммунотерапии опухолей. Российский биотерапевтический журнал. 2018; 17 (2): 6–14.
- 12. Дмитриева М. В., Барышникова М. А., Орлова О. Л., Косоруков В. С. Технологические аспекты создания неопептидных вакцин. 2022; 21 (4): 10–21.
- Ji YS, Park SK, Ryu S. Whole leukemia cell vaccines: past progress and future directions. Vaccine. 2020; 38 (22): 3811–20.
- 14. U. S. National Library of Medicine. Available from: https://www.clinicaltrials.gov/ct2/home
- 15. Cox MC, Castiello L, Mattei M, Santodonato L, D'Agostino G, Muraro E, et al. Clinical and antitumor immune responses in relapsed/refractory follicular lymphoma patients after intranodal injections of IFNα-dendritic cells and rituximab: a phase I clinical trial. Clin Cancer Res. 2019; 25 (17): 5231–41.
- Tay BQ, Wright Q, Ladwa R, Perry C, Leggatt G, Simpson F, et al. Evolution of cancer vaccines — challenges, achievements, and future directions. Vaccines. 2021; 9 (5): 535.
- Balan S, Arnold-Schrauf C, Abbas A, Couespel N, Savoret J, Imperatore F, et al. Large-scale human dendritic cell differentiation revealing notch-dependent lineage bifurcation and heterogeneity. Cell reports. 2018; 24 (7): 1902–15.
- Kirkling ME, Cytlak U, Lau CM, Lewis KL, Resteu A, Khodadadi-Jamayran A, et al. Notch signaling facilitates in vitro generation of cross-presenting classical dendritic cells. Cell reports. 2018; 23 (12): 3658–72.
- Sundarasetty BS, Chan L, Darling D, Giunti G, Farzaneh
 F, Schenck F, et al. Lentivirus-induced 'Smart'dendritic

- cells: Pharmacodynamics and GMP-compliant production for immunotherapy against TRP2-positive melanoma. Gene therapy. 2015; 22 (9): 707–20.
- Kim JH, Kang TH, Noh KH, Kim SH, Lee YH, Kim KW, et al. Enhancement of DC vaccine potency by activating the PI3K/AKT pathway with a small interfering RNA targeting PTEN. Immunology letters. 2010; 134 (1): 47–54.
- Theisen DJ, Davidson IV JT, Briseño CG, Gargaro M, Lauron EJ, Wang Q, et al. WDFY4 is required for cross-presentation in response to viral and tumor antigens. Science. 2018; 362 (6415): 694–9.
- Sharei A, Cho N, Mao S, Jackson E, Poceviciute R, Adamo A, et al. Cell squeezing as a robust, microfluidic intracellular delivery platform. JoVE. 2013; 81: e50980.
- 23. Maloney M, Loughhead S, Ramakrishnan A, Smith C, Venkitaraman A, Yee C, et al. 169 Microfluidics cell squeezing enables human PBMCs as drivers of antigen-specific CD8 T responses across broad range of antigens for diverse clinical applications. Journal for ImmunoTherapy of Cancer. 2020; 8: [about 1 p.]. Available from: https://jitc.bmj.com/content/8/Suppl_3/A183.
- Santos P, Almeida F. Exosome-based vaccines: history, current state, and clinical trials. Frontiers in Immunology. 2021; 12: 711565
- Viaud S, Ploix S, Lapierre V, Théry C, Commere PH, Tramalloni D, et al. Updated technology to produce highly immunogenic dendritic cell-derived exosomes of clinical grade: a critical role of interferon-γ. Journal of immunotherapy. 2011; 34 (1): 65–75.
- 26. Besse B, Charrier M, Lapierre V, Dansin E, Lantz O, Planchard D, et al. Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Oncoimmunology. 2016; 5 (4): e1071008.
- 27. Mayer CT, Ghorbani P, Nandan A, Dudek M, Arnold-Schrauf C, Hesse C, et al. Selective and efficient generation of functional Batf3-dependent CD103+ dendritic cells from mouse bone marrow. Blood, The Journal of the American Society of Hematology. 2014; 124 (20): 3081–91.
- 28. Failli A, Legitimo A, Orsini, G, Romanini A, Consolini R. Numerical defect of circulating dendritic cell subsets and defective dendritic cell generation from monocytes of patients with advanced melanoma. Cancer letters. 2013; 337 (2): 184–92.
- Della Bella S, Gennaro M, Vaccari M, Ferraris C, Nicola S, Riva A, et al. Altered maturation of peripheral blood dendritic cells in patients with breast cancer. British journal of cancer. 2003; 89 (8): 1463–72.
- Meyer MA, Baer JM, Knolhoff BL, Nywening TM, Panni RZ, Su X, et al. Breast and pancreatic cancer interrupt IRF8-dependent dendritic cell development to overcome immune surveillance. Nature communications. 2018; 9 (1): 1–19.
- 31. Wculek SK, Amores-Iniesta J, Conde-Garrosa R, Khouili SC,

- Melero I, Sancho D. Effective cancer immunotherapy by natural mouse conventional type-1 dendritic cells bearing dead tumor antigen. Journal for immunotherapy of cancer. 2019; 7 (1): 1–16.
- Zhang J, Fan J, Skwarczynski M, Stephenson RJ, Toth I, Hussein WM. Peptide-Based Nanovaccines in the Treatment of Cervical Cancer: A Review of Recent Advances. International Journal of Nanomedicine. 2022; 17: 869.
- 33. Cueto FJ, Sancho D. The Flt3L/Flt3 axis in dendritic cell biology and cancer immunotherapy. Cancers. 2021; 13 (7): 1525.
- 34. Versteven M, Van den Bergh JM, Marcq E, Smits EL, Van Tendeloo VF, Hobo W, et al. Dendritic cells and programmed death-1 blockade: a joint venture to combat cancer. Frontiers in immunology. 2018; 9: 394.
- Van Beek JJ, Gorris MA, Sköld AE, Hatipoglu I, Van Acker HH, Smits EL, et al. Human blood myeloid and plasmacytoid dendritic cells cross activate each other and synergize in inducing NK cell cytotoxicity. Oncoimmunology. 2016; 5 (10): e1227902.
- Van Acker HH, Anguille S, De Reu H, Berneman ZN, Smits EL, Van Tendeloo VF. Interleukin-15-cultured dendritic cells enhance anti-tumor gamma delta T cell functions through IL-15 secretion. Frontiers in immunology. 2018; 9: 658.
- Calmeiro J, Carrascal MA, Tavares AR, Ferreira DA, Gomes C, Cruz MT, et al. Pharmacological combination of nivolumab with dendritic cell vaccines in cancer immunotherapy: an overview. Pharmacological Research. 2021; 164: 105309.
- 38. Böttcher JP, Bonavita E, Chakravarty P, Blees H, Cabeza-Cabrerizo M, Sammicheli S, et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell. 2018; 172 (5): 1022–37.
- Abakushina EV, Popova LI, Zamyatnin Jr AA, Werner J, Mikhailovsky NV, Bazhin AV. The advantages and challenges of anticancer dendritic cell vaccines and NK cells in adoptive cell immunotherapy. Vaccines. 2021; 9 (11): 1363.
- Tan X, Li D, Huang P, Jian X, Wan H, Wang G et al. dbPepNeo: a manually curated database for human tumor neoantigen peptides. Database. 2020; 2020: baaa004.
- Verdegaal EME, de Miranda NFCC, Visser M, Harryvan T, van Buuren MM, Andersen RS, et al. Neoantigen landscape dynamics during human melanoma

 –T cell interactions. Nature. 2016; 536 (7614): 91–95.
- Addeo A, Friedlaender A, Banna GL, Weiss GJ. TMB or not TMB as a biomarker: That is the question. Critical reviews in oncology/ hematology. 2021; 163: 103374.
- Saxena M, van der Burg SH, Melief CJ, Bhardwaj N. Therapeutic cancer vaccines. Nature Reviews Cancer. 2021; 21 (6): 360–78.
- 44. Aramini B, Masciale V, Grisendi G, Bertolini F, Maur M, Guaitoli G, et al. Dissecting tumor growth: The role of cancer stem cells in drug resistance and recurrence. Cancers. 2022; 14 (4): 976.

References

- Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortali-ty worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2021; 71 (3): 209–49.
- Ershov PV, Veselovskij EM, Konstantinova YuS. Role of heredity, endogenous and exogenous factors in gastric cancer. Extreme Medicine. 2020; (4): 67–80.
- Hirakawa A, Asano J, Sato H, Teramukai S. Master protocol trials in oncology: review and new trial designs. Contemporary clinical trials communications. 2018; 12: 1–8.
- Upadhaya S, Neftelinov ST, Hodge J, Campbell J. Challenges and op-portunities in the PD1/PDL1 inhibitor clinical trial landscape. Nat Rev Drug Discov. 2022; 21 (7): 482–3.
- 5. Yu J, Sun H, Cao W, Song Y, Jiang Z. Research progress on dendritic cell vaccines in cancer immunotherapy. Experimental Hematology & Oncology. 2022; 11 (1): 1–22.
- Perez CR, De Palma M. Engineering dendritic cell vaccines to improve cancer immunotherapy. Nature communications. 2019; 10 (1): 1–10.
- 7. Belderbos RA, Aerts JGJV, Vroman H. Enhancing dendritic cell therapy in solid tumors with immunomodulating conventional

- treatment. Mol Ther Oncolytics. 2019; 13: 67-81.
- Markov OV, Mironova NL, Vlasov VV, Zenkova MA. Protivoopuxolevye vakciny na osnove dendritnyx kletok: ot ehksperimentov na zhivotnyx modelyax do klinicheskix ispytanij. Acta naturae. 2017; 9 (34): 29–41. Russian.
- Reynolds CR, Tran S, Jain M, Narendran A. Neoantigen cancer vaccines: generation, optimization, and therapeutic targeting strategies. Vaccines. 2022; 10 (2): 196.
- Lebedeva ES, Ataullaxanov RI, Xaitov RM. Vakciny dlya lecheniya zlokachestvennyx novoobrazovanij. Immunologiya. 2019; 40 (4): 64–76. DOI: 10.24411/0206-4952-2019-14008. Russian.
- Baryshnikova MA, Kosobokova EN, Kosorukov VS. Neoantigeny v immunoterapii opuxolej. Rossijskij bioterapevticheskij zhurnal. 2018; 17 (2): 6–14. Russian.
- Dmitrieva MV, Baryshnikova MA, Orlova OL, Kosorukov VS. Texnologicheskie aspekty sozdaniya neopeptidnyx vakcin. 2022; 21 (4): 10–21. Russian.
- Ji YS, Park SK, Ryu S. Whole leukemia cell vaccines: past progress and future directions. Vaccine. 2020; 38 (22): 3811–20.
- U. S. National Library of Medicine. Available from: https://www. clinicaltrials.gov/ct2/home

- 15. Cox MC, Castiello L, Mattei M, Santodonato L, D'Agostino G, Muraro E, et al. Clinical and antitumor immune responses in relapsed/refractory follicular lymphoma patients after intranodal injections of IFNα-dendritic cells and rituximab: a phase I clinical trial. Clin Cancer Res. 2019; 25 (17): 5231–41.
- Tay BQ, Wright Q, Ladwa R, Perry C, Leggatt G, Simpson F, et al. Evolution of cancer vaccines — challenges, achievements, and future directions. Vaccines. 2021; 9 (5): 535.
- Balan S, Arnold-Schrauf C, Abbas A, Couespel N, Savoret J, Imperatore F, et al. Large-scale human dendritic cell differentiation revealing notch-dependent lineage bifurcation and heterogeneity. Cell reports. 2018; 24 (7): 1902–15.
- Kirkling ME, Cytlak U, Lau CM, Lewis KL, Resteu A, Khodadadi-Jamayran A, et al. Notch signaling facilitates in vitro generation of cross-presenting classical dendritic cells. Cell reports. 2018; 23 (12): 3658–72.
- Sundarasetty BS, Chan L, Darling D, Giunti G, Farzaneh F, Schenck F, et al. Lentivirus-induced 'Smart'dendritic cells: Pharmacodynamics and GMP-compliant production for immunotherapy against TRP2-positive melanoma. Gene therapy. 2015; 22 (9): 707–20.
- Kim JH, Kang TH, Noh KH, Kim SH, Lee YH, Kim KW, et al. Enhancement of DC vaccine potency by activating the PI3K/AKT pathway with a small interfering RNA targeting PTEN. Immunology letters. 2010; 134 (1): 47–54.
- Theisen DJ, Davidson IV JT, Briseño CG, Gargaro M, Lauron EJ, Wang Q, et al. WDFY4 is required for cross-presentation in response to viral and tumor antigens. Science. 2018; 362 (6415): 694–9.
- Sharei A, Cho N, Mao S, Jackson E, Poceviciute R, Adamo A, et al. Cell squeezing as a robust, microfluidic intracellular delivery platform. JoVE. 2013; 81: e50980.
- 23. Maloney M, Loughhead S, Ramakrishnan A, Smith C, Venkitaraman A, Yee C, et al. 169 Microfluidics cell squeezing enables human PBMCs as drivers of antigen-specific CD8 T responses across broad range of antigens for diverse clinical applications. Journal for ImmunoTherapy of Cancer. 2020; 8: [about 1 p.]. Available from: https://jitc.bmj.com/content/8/Suppl_3/A183.
- Santos P, Almeida F. Exosome-based vaccines: history, current state, and clinical trials. Frontiers in Immunology. 2021; 12: 711565.
- Viaud S, Ploix S, Lapierre V, Théry C, Commere PH, Tramalloni D, et al. Updated technology to produce highly immunogenic dendritic cell-derived exosomes of clinical grade: a critical role of interferon-γ. Journal of immunotherapy. 2011; 34 (1): 65–75.
- Besse B, Charrier M, Lapierre V, Dansin E, Lantz O, Planchard D, et al. Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Oncoimmunology. 2016; 5 (4): e1071008.
- Mayer CT, Ghorbani P, Nandan A, Dudek M, Arnold-Schrauf C, Hesse C, et al. Selective and efficient generation of functional Batf3-dependent CD103+ dendritic cells from mouse bone marrow. Blood, The Journal of the American Society of Hematology. 2014; 124 (20): 3081–91.
- Failli A, Legitimo A, Orsini, G, Romanini A, Consolini R. Numerical defect of circulating dendritic cell subsets and defective dendritic cell generation from monocytes of patients with advanced

- melanoma, Cancer letters, 2013; 337 (2); 184-92.
- Della Bella S, Gennaro M, Vaccari M, Ferraris C, Nicola S, Riva A, et al. Altered maturation of peripheral blood dendritic cells in patients with breast cancer. British journal of cancer. 2003; 89 (8): 1463–72.
- Meyer MA, Baer JM, Knolhoff BL, Nywening TM, Panni RZ, Su X, et al. Breast and pancreatic cancer interrupt IRF8-dependent dendritic cell development to overcome immune surveillance. Nature communications. 2018; 9 (1): 1–19.
- Wculek SK, Amores-Iniesta J, Conde-Garrosa R, Khouili SC, Melero I, Sancho D. Effective cancer immunotherapy by natural mouse conventional type-1 dendritic cells bearing dead tumor antigen. Journal for immunotherapy of cancer. 2019; 7 (1): 1–16.
- Zhang J, Fan J, Skwarczynski M, Stephenson RJ, Toth I, Hussein WM. Peptide-Based Nanovaccines in the Treatment of Cervical Cancer: A Review of Recent Advances. International Journal of Nanomedicine. 2022; 17: 869.
- Cueto FJ, Sancho D. The Flt3L/Flt3 axis in dendritic cell biology and cancer immunotherapy. Cancers. 2021; 13 (7): 1525.
- 34. Versteven M, Van den Bergh JM, Marcq E, Smits EL, Van Tendeloo VF, Hobo W, et al. Dendritic cells and programmed death-1 blockade: a joint venture to combat cancer. Frontiers in immunology. 2018; 9: 394.
- 35. Van Beek JJ, Gorris MA, Sköld AE, Hatipoglu I, Van Acker HH, Smits EL, et al. Human blood myeloid and plasmacytoid dendritic cells cross activate each other and synergize in inducing NK cell cytotoxicity. Oncoimmunology. 2016; 5 (10): e1227902.
- Van Acker HH, Anguille S, De Reu H, Berneman ZN, Smits EL, Van Tendeloo VF. Interleukin-15-cultured dendritic cells enhance anti-tumor gamma delta T cell functions through IL-15 secretion. Frontiers in immunology. 2018; 9: 658.
- Calmeiro J, Carrascal MA, Tavares AR, Ferreira DA, Gomes C, Cruz MT, et al. Pharmacological combination of nivolumab with dendritic cell vaccines in cancer immunotherapy: an overview. Pharmacological Research. 2021; 164: 105309.
- Böttcher JP, Bonavita E, Chakravarty P, Blees H, Cabeza-Cabrerizo M, Sammicheli S, et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell. 2018; 172 (5): 1022–37.
- Abakushina EV, Popova LI, Zamyatnin Jr AA, Werner J, Mikhailovsky NV, Bazhin AV. The advantages and challenges of anticancer dendritic cell vaccines and NK cells in adoptive cell immunotherapy. Vaccines. 2021; 9 (11): 1363.
- 40. Tan X., Li D., Huang P., Jian X., Wan H., Wang G. et al. dbPepNeo: a manually curated database for human tumor neoantigen peptides. Database. 2020; 2020: baaa004.
- Verdegaal EME, de Miranda NFCC, Visser M, Harryvan T, van Buuren MM, Andersen RS, et al. Neoantigen landscape dynamics during human melanoma

 –T cell interactions. Nature. 2016; 536 (7614): 91–95.
- Addeo A, Friedlaender A, Banna GL, Weiss GJ. TMB or not TMB as a biomarker: That is the question. Critical reviews in oncology/ hematology. 2021; 163: 103374.
- Saxena M, van der Burg SH, Melief CJ, Bhardwaj N. Therapeutic cancer vaccines. Nature Reviews Cancer. 2021; 21 (6): 360–78.
- 44. Aramini B, Masciale V, Grisendi G, Bertolini F, Maur M, Guaitoli G, et al. Dissecting tumor growth: The role of cancer stem cells in drug resistance and recurrence. Cancers. 2022; 14 (4): 976.