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Establishing a link between the objective research data and 
the thought process is the most important issue of modern 
neurophysiology.

Following the development of the method for human 
electroencephalography recording by H. Berger in 1929, the 
researchers proposed different approaches to the issue, from 
attempting to convert brainwaves into audio recording [1] to the 
use of top-down artificial intelligence system that involved using 
the data sets obtained when examining people with various 
disorders. However, despite the range of the used technologies, 
we are still a long way from resolving the problem.

Currently, researchers are less interested in neurophysiological 
techniques based on EEG/MEG recording of various modalities 
due to a number of objective reasons. Thus, conventional 
EEG tests involve recording of continious rhythmic activity of 
the brain with the pool of electrodes evenly distributed over the 
scalp surface. All electrodes are equal in design and function, 
that is why a composite signal resulting from the activity of brain 
structures together with multiple artifacts of physiological and 
physical origin are registered on each electrode [2]. There is a 
need for careful processing of the composite signal to distinguish 
distinct components by mathematical methods [3] that require 
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Objective diagnostic assessment of the human thought processes is an important issue of modern neurophysiology. The study was aimed to develop a system 
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ИССЛЕДОВАНИЕ ЗРИТЕЛЬНОГО ГНОЗИСА С ПОМОЩЬЮ АНАЛИЗА ЭЭГ-МИКРОСОСТОЯНИЙ

Объективная диагностика мыслительных процессов человека представляет собой важную проблему современных нейрофизиологических исследований. 

Целью исследования было разработать систему анализа процессов зрительного гнозиса как модели высшей нервной функции. Обследовано 

30 человек в возрасте 30–60 лет, не имеющих острых заболеваний или  обострений хронических заболеваний, а также выраженных проблем со зрением. 

Анализ электроэнцефалограмм включал подавление артефактной ЭЭГ-активности, кластеризацию с выделением отдельных ЭЭГ-микросостояний 

согласно выбранной модели и последующим установлением локализации основного источника активности, формирующего ЭЭГ-микросостояние, 

посредством алгоритмов решения обратной задачи ЭЭГ пакета программ eLORETA. При тесте на зрительный гнозис с рассматриванием письменных 

знаков активность была зарегистрирована над большим числом полей Бродмана, чем в состоянии пассивного расслабленного бодрствования, и 

затрагивала поля Бродмана 18 и 19 (11 и 45% соответственно), ответственных за зрительное восприятие образов, 39-е поле — дополнительную часть 

области Вернике (6%), а также структуры премоторной и префронтальных областей (поля 6–11) (до 11%) при (p < 0,001; тест хи-квадрат Пирсона). 

Микросостояния, определяемые во время пребывания обследуемого в состоянии расслабленного бодрствования и при выполнении зрительной 

нагрузки, не представляют собой идентичные феномены, а являются градуированными производными кластерного анализа в рамках используемой 

математической модели. Решения обратной ЭЭГ-задачи на конечном этапе исследования позволяют определить усредненные последовательности 

ритмической активности, связанные с реализацией функции зрительного гнозиса. 
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in-depth training of specialists. The other feature of the technique 
is that it is difficult to establish an objective link between 
the characteristics of the studied signals and the changes 
in environmental conditions, i.e. signal sensitivity. Discrete 
methods, such as evoked potential tests, involve recording 
the changes in biopotentials after stimulus presentation, thus 
allowing the researcher to set the zero reference point to assess 
the association of the changes observed with significant and 
non-significant stimuli. However, a wide range of different stimuli 
is needed to assess a complex cognitive stimulus, that is why 
different method implementation is required [4, 5].

Among EEG data processing methods designed for this 
purpose that make it possible to establish an objective link 
between the changing characteristics of the signal recorded and 
external exposure, clustering algorithms [6] and techniques for 
solving the inverse EEG problem [7–9] are the most interesting. 
These methods allow for determining the pattern and detection 
of changes in bioelectric activity of distinct brain structures. 

Currently, clustering of continuous EEG signal proposed 
in the 1990s [10] enables real-time acquisition of data from 
the neuronal structures of the brain. The technique is based 
on monitoring the characteristics of distribution of the head 
surface biopotentials that show discrete changes in the total 
energy density of the total scalp potential. Thus, the first variant 
remains stable within a short time frame, then it quickly gives 
way to the other one that also remains stable for some time. In 
1995 R. Pasqual-Marque introduced a mathematical method 
for active detection of EEG microstates by clustering continuous 
EEG data [11, 12]. These studies confirmed the perception that 
each EEG microstate reflected the function of certain neural 
network of the brain or functionally linked group, and microstate 
sequences could be considered a reflection of realization of certain 
brain function [13]. Such approach has made it possible to divide 
the continuous flow of EEG data acquired during initial assessment 
into components that currently allow us to detect as many as 39 
distinct EEG microstates. However, only six first microstate 
classes can be fully representative, which is possibly due to 
the activity of large neural networks responsible for realization 
of basic and the most stable brain functions; impairment of these 
functions manifests in the form of severe mental disorders [14–16]. 
Therefore, the functional study performed using the method 
outlined above makes it possible to define interconnection system, 
and the technique for solving the inverse EEG problem allows one 
to map brain structures involved in implementation of the studied 
brain function. However, when using the technique for solving the 
inverse EEG problem, it is necessary to take into account that the 
terms “EEG activity” and “functional activity of nervous tissue” are 
not synonymous in the context of physiological research [17]. When 
performing physiological research, the power of scalp potential of 
the cortical areas that produce rhythmic activity is registered as the 
area of high signal strength in contrast to the areas of the nervous 
tissue excitation characterized by low amplitude and disorganized 
EEG patterns [18, 19].

That is why the use of combined analysis based on various 
functional imaging techniques (EEG-fMRI, MEG-fMRI, etc.) to 
confirm the physiological research data could be ineffective 
[20]. The study was aimed to develop a system for analysis and 
assessment of visual gnostic processes as a model of higher 
nervous function by solving the inverse EEG problem based on 
the cluster EEG microstate model.

METHODS

A total of 30 generally healthy people aged 30–60 (32.4 ± 9 years) 
were enrolled. Inclusion criteria: no significant visual 

problems. Exclusion criteria: history of head or eye injury; 
taking medications on a regular basis. The resting state 
EEG was continiously recorded in all subjects with their eyes 
closed, eyes open, and when continiously looking at symbols 
(letters, numbers) in the black and white contrast image on 
the computer screen. The subjects were allowed to rest for 
3 minutes between tests to recuperate.

Subsequent analysis of encephalograms included removal 
of artifacts resulting from interference during EEG recording by 
filtering using digital filters with fixed bandwidth of 1–35 Hz in 
order to suppress the galvanic skin response and myographic 
artifacts. Later physiological artifacts were removed using the 
independent component analysis performed with the RUNICA 
utility of the EEGLAB Ver. 2022a software package (USA). 
Clustering of the continious EEG signal was performed by 
distinguishing distinct stable EEG microstates in accordance 
with the selected six-component model using the atomize and 
agglomerate hierarchical clustering (AAHC) that showed higher 
sensitivity compared to K-means clustering. Six components 
were selected based on the current two-streams hypothesis 
of functional brain network organization and the existence of 
functional links between certain microstates and information 
processing. In this case two additional microstates were 
considered the reserve quantities. Spatial localization of 
rhythmic activity for each EEG microstate was calculated at 
the final stage using the algorithms for solving the inverse EEG 
problem implemented in the sLORETA software package.

Histograms of bioelectric activity recorded within Brodmann 
areas were created based on the results of each test for each 
participant and each group (average).

Hardware and software used during the study

A 128 channel EGI-GES-300 bioamplifier combined with the 
original GSN-128 sensor net system (analogue for the 10-5 system) 
(MAGSTIM; USA). EEGLAB software package for MATLAB_
Runtime 2021b (Center of the Institute for Neural Computation, 
the University of California San Diego; USA). eLORETA v20210701 
software package (University Hospital of Psychiatry, University 
of Zurich; Switzerland). Statistical software package GNU PSPP 
(International). Operating system Linux Mate 21.10 (Canonics; UK). 
Suite of office applications LibreOffice 7.2 (Document Foundation; 
USA). No commercial licenced software was used during the study.
 
Selection of functional study design

The study involved stimulation of the visual sensory system since 
its neuronal networks occupied the largest area of the cortex, 
and excitation in these networks caused the most significant 
changes in rhythmic activity of the brain thus allowing one to get 
more accurate results compared to analysis of activity of other 
neuronal systems. The following situations were chosen as 
loading tests: the state of relaxed wakefulness with eyes closed 
or open, and the state of visual gnosis realization through looking 
at various symbols and signs on the screen of LED monitor. Our 
aim was to define the characteristics of bioelectric activity with 
the sensory system in inactive (eyes closed) or active state, in 
the situation of no mental task performed (relaxed wakefulness 
with eyes open) or during realization of mental task in the form 
of test that involved looking at symbols.

Statistical analysis

A linear model that included one factor, the impact on the visual 
sensory system, was used in the study. Regarless of the direct 
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Fig. 1. Average values of EEG microstate occurrence per second for six microstate classes obtained when peforming loading tests 
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Fig. 2. Average values of changes in the EEG miscrostate contribution to the total energy of the scalp field (coverage) obtained when performing the main tests during 
the study
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correlations between the experimental data, one-way analysis of 
variance (ANOVA) was chosen after testing for normality due to the 
differences between data obtained using the model for dividing the 
studied activity into classes. Significance of the results obtained by 
solving the inverse EEG problem was tested using the Pearson's 
chi-squared test, since the changes were of a qualitative nature. 
Assessment was performed in accordance with the guidelines [21].

RESULTS

Characteristics of EEG microstates obtained during the 
experiment 

The main objective measures of EEG microstates used in the 
study were as follows: microstate occurrence per second, 
microstate duration in seconds, and microstate percentage 

in the structure of the total EEG potential (coverage). These 
indicators conditionally reflected the characteristics of certain 
neuronal network that had generated every single microstate, 
the frequency of its functional activation during realization of 
the studied function, and relative amount of functional elements 
contained in this network. 

Studying the EEG microstate occurrence showed that 
the biggest changes took place when comparing the tests 
performed in the state of relaxed wakefulness with eyes open 
with the tests performed with eyes open. Thus, indicators of the 
first and second class significantly (p < 0.05; ANOVA) changed 
during all tests. However, in other classes of EEG microstates, 
significant differences (p < 0.05; ANOVA) were observed only 
with the state of eyes-closed relaxed wakefulness. In other 
cases no significant differences in occurrence were found when 
peforming tests with eyes open (0.1 < p < 0.8; ANOVA) (Fig. 1). 
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Fig. 3. Changes in EEG microstate duration (average values) depending on the load 
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 Calculation of the EEG miscrostate contribution to the 
total energy of the scalp field (coverage) revealed no signficant 
differences between the characteristics obtained during three 
tests. The significance level exceeded 0.5 (Fig. 2). 

Assessment of EEG microstate duration showed that this 
indicator significantly increased when the subjects opened 
their eyes or performed the loading test that involved looking at 
symbols (0.01< p < 0.05; ANOVA). Comparison of the values 
obtained when the subjects had their eyes closed or were 
actively engaged in performing the visual test revealed almost 
no differences (0.1< p < 0.9; ANOVA). 

Solving the inverse EEG problem for the used model 
of the EEG microstate classes 

The inverse EEG problem was solved using the e-LORETA 
software package. Source localization and verification against 
Brodmann's map was performed by clustering for each EEG 
microstate class.

In the state of relaxed wakefulness with eyes closed, activity 
was detected within the following Brodmann areas: 11 — 
areas of olfactory system, 18 and 19 — secondary zones of 
visual sensory system, 21 — vestibular area, 37–47 — areas 
responsible for perception of music. In the context of detecting 
rhythmic EEG activity these reflected the centers' readiness to 
perceive and analyze the tonal stimuli, or to respond in case of 
human reaction to stimulation in the form of sound (screaming, 
sounds having no morpho-phonetic structure).

Eye-opening changed the pattern recorded. Three main 
zones of activity were distinguished: area 18 — areas of visual 
sensory system responsible for the written text recognition, 
area 20 — cortical center of the vestibular system / complex 
pattern recognition, area 37 — acoustic-gnostic speech center.

When performing the test for visual gnosis that involved looking 
at written symbols, activity was detected within a larger number 
of Brodmann areas compared to the state of relaxed wakefulness 
(Fig. 4). Activity was found in Brodmann areas 18 and 19 responsible 
for visual perception of images, area 39 being a part of Wernicke's 
area, and the structures of premotor and prefrontal areas (areas 6–11).

DISCUSSION

The study showed that the technique for continuous EEG 
monitoring supplemented by methods for EEG microstate 
analysis and solving the inverse EEG problem could be used as 
a research tool for assessment of changes in functional brain 
activity during realization of higher nervous functions.

Analysis of the main EEG microstate characteristics has 
shown that activation of visual sensory system has an overall 
impact on the occcurence and duration of each EEG microstate 
class. However, no significant changes in the contribution of 
each class to the total energy of the scalp field (coverage) are 
observed. This fact correlates with the results of a number of 
studies [22, 23], since such stability results from intact structure 
of neuronal networks involved in generation of each microstate 
in the generally healthy experimental subjects. 

Significant variability of the first and second class EEG 
microstate occurrence was also the expected result that had 
been previously described in literature. Such variability was 
related to rearrangement of large neuronal network during 
realization of functional response. As previously reported, the 
lack of similar dynamic changes in the characteristics of other 
four classes was possibly due to the fact that these were more 
difficult to distinguish when assessing the recording [24].

Observations suggest that microstates detected when the 
subject is in a state of relaxed wakefulness with his/her eyes 
closed or in a situation of visual load are not identical, since the 
activity of neuronal networks that generate these microstates 
shows up significant differences in both occurrence and 
duration of each of the distinguished EEG microstate classes. It 
may be assumed that the posiibility of EEG signal discretization 
involving division into separate groups of brain activity that 
correspond to functioning of distinct neuronal networks is the 
main effect of the used cluster model. However, calculation of 
basic EEG microstate characteristics makes it impossible to 
define their specificity. 

The experiment showed that EEG microstates detected 
when the subject was in a state of relaxed wakefulness or in 
the situation of visual load were not identical. Rather these 
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Fig. 4. Comparison of average (for the group) quantitative characteristics of the Brodmann area signal recorded in the situation of solving the inverse EEG problem 
when performing tests during the study based on the model of six EEG microstate classes (p < 0.001; Pearson's chi-squared test). a — eyes closed, b — eyes open; 
c — performing recognition test 
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were gauge derivatives of clustering in the context of used 
mathematical model, which was confirmed by the differences 
in their basic characteristics measured in a resting state, with 
eyes open, and when performing the loading test. However, 
no reports of similar findings were found in the reviewed literary 
sources. 

Solving the inverse EEG problem at the final stage of 
the study made it possible to localize and define (based on 
Brodmann areas) three average sequences typical for the loads 
used during the study. Taking into account the features of the 
EEG signal recording and frequency analysis, these reflected 
the processes of preparing/selecting the appropriate neuronal 
networks for further functional activity. Such processes can be 
considered the idle state [25–27]. However, during realization 
of complex (gnostic) brain functions, excitation and idling 
processes change each other in a rhythmic manner, thus 
allowing us to characterize certain sections as active and 
consider these as related to realization of the studied function. 
Thus, in the state of relaxed wakefulness with eyes open 
almost no rhythmic activity was detected within the Brodmann 
area 19, since this neuronal network was in the excited state 
and showed minimum bandpower of the signal. At the same 
time bandpower of the areas responsible for complex pattern 
recognition (area 20) and gnostic centers of sound perception 
and analysis (area 37) indicated that these structures were 
ready for engagement, which actually corresponded to the state 
of increased attention while awaiting speech addressed to a 
person. No such components related to being more focused on 
a specific task were observed in a state of passive wakefullness 
with eyes closed. The changes in rhythmic activity affected visual 
areas (areas 18 and 19) and the center involved in processing of 

music (area 47), which corresponded more closely to awaiting 
perception of external signals, readiness for analysis of these 
signals and primary non-specific response. Under the test load 
in the form of looking at symbols the patterns of rhythmic activity 
were more complex than in the state of passive wakefulness, 
since these involved a larger number of Brodmann areas. This 
observation was considered as a consequence of the neural 
network cyclic transitions between the excited state and idle 
state during realization of visual gnostic function.

Thus, we believe that the method proposed in our study 
based on using EEG microstates makes it possible to reveal 
functional sequences associated with realization of distinct brain 
functions. In the future the method may be used in developing 
the new diagnostic equipment for objective assessment of 
thought processes in the brain. 

CONCLUSIONS

The study has shown the potential of studying higher nervous 
functions by recording the changes in characteristics of the 
scalp surface biopotentials. However, implementation of 
the technique requires a radical revision of both EEG test 
organization and analysis of the results. It is necessary to 
develop the new diagnostic equipment that should be quite 
different from the currently used conventional EEG systems. The 
analytical unit should be completely revised in favor of systems 
for automated analysis of activity generated by structures in the 
brain. The prospects of such inventions are not only of great 
interest for modern neuroscience, but also have a significant 
potential for the development of human monitoring systems in 
harsh environmental conditions.
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