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One of the approaches to cartilage tissue restoration problem relies on cellular technologies that use iPSCs, induced pluripotency stem cells that are an
unlimited source of cellular material for tissue engineering with significant differentiation potential. However, there are no standardized protocols for chondrogenic
differentiation of iPSCs. This study aimed to make cartilage tissue samples using 3D spheroid cultures and following four chondrogenic differentiation protocols, then
compare characteristics of the cartilage samples made under different protocols and isolate the most effective way of differentiation. The iPSCs were differentiated
chondrogenically, the four protocols were "long", "short", "combined" and with conditioned medium from a primary culture of autologous chondrocytes; the
combinations of TGFR1, BMP2, Chir 99021, and PK factors varied. Microwell plates were used to make spheroids. Immunocytochemical staining, real-time PCR
and histological staining enabled assessment of the synthesis and expression profiles. High rates of synthesis and expression of chondrogenic markers Sox9,
aggrecan, type Il collagen were observed in spheroids experimented with under the "long", "combined" protocols and the conditioned medium protocol. The
"combined" differentiation protocol made chondrogenesis most effective, and conditioned medium was highly efficient in inducing and supporting chondrogenic
differentiation.

Keywords: tissue engineering, articular cartilage, induced pluripotency stem cells (iPSCs), spheroids, chondrogenesis
Funding: the study was supported with an allocation #22-15-00250 by the Russian Science Foundation.
Acknowledgments: the authors thank Corresponding Member of the Russian Academy of Sciences M.A. Lagarkova for providing research facilities for the study

Author contribution: Eremeev AV — design of the experiment, general guidance, article authoring; Pikina AS — literature review, collection of the material,
participation in the experimental part of the work, analysis of the resulting data; Ruchko ES — participation in the experimental part of the work; Sidorov VS,
Ragozin AO — provision of material for the experiment.

Compliance with ethical standards: the study was performed in conformity with the principles of the Declaration of Helsinki (2000) and its subsequent revisions.

><] Correspondence should be addressed: Artem V. Eremeev
Malaya Pirogovskaya, 1a, 119435, Moscow, Russia; art-eremeev@yandex.ru

Received: 12.10.2022 Accepted: 28.10.2022 Published online: 23.12.2022
DOI: 10.47183/mes.2022.037

MOJNIYYEHUE XPALLENMOAOBHbLIX CTPYKTYP U3 CTBOJIOBbIX KNIETOK C MHOYLIMPOBAHHOM
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OfHUM 13 NMOAXOA0B AN PeLlerns MpobfieMbl BOCCTaHOBEHUS XPSLLEBOW TKaHN SBNSETCS UCTMONb30BaHNEe KIIETOYHbIX TEXHONOMMIN ¢ npuMeHeHnem WIMNCK,
obnagatoLLyx 60MLLLIMM MOTEHLMAIOM K ANAEEPEHLMPOBKE 1 ABNSIOLLMXCS HEOrPaHNHYEHHBIM UCTOYHNKOM KIETOHHOMO Martepuana Ans TKaHEBON NHKEHEPN.
OpHaKo CTaHAapTU3NPOBaHHbIX MPOTOKOSOB XoHAporeHHon anddepeHLmpoBkm UMCK HeT. Lienbto paboTbl 6bi10 NonyymTb XpswenofobHble obpasiibl TKaHn ¢
nomoLLpto MeTofa 3D-KyNETVBMPOBaHNS CHEPOVOB C MCMONB30BaHMEM YEThIPEX MPOTOKONOB XOHAPOrEHHOM AN MEPEHLIMPOBKY, CPaBHUTL XapakTepUCTUKM
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B peaslbHOM BPEMeHU, a TakKe MMCTONOrMYeCKoro OKpallnBaHys. BbICOKME nokasaTenn CUHTe3a U SKCMPECCUN XOHAPOreHHbIX MapkepoB Sox9, arrpekaHa,
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Peculiarities of morphology of the hyaline cartilage tissue make
its ability to heal rather low. Without proper therapy, most
defects of the cartilage caused by trauma, focal lesions or
degeneration processes progress, for example, into arthrosis,
which negatively affects the quality of life. Cellular technologies
that can cover losses of functionally active cells in the damaged
tissue area and trigger effective healing offer a promising
approach to this problem.

CO.DON, a German company, has been using such cellular
technologies in the clinic for over 10 years: the respective
protocols of treatment of the damaged articular cartilage rely
on autologous chondrocytes, which ensure development of a
phenotypically stable cartilage during healing [1-3]. However,
transplantation of autologous chondrocytes, although a
proven successful approach to the damaged hyaline cartilage
restoration, is quite invasive: collection of the donor material
requires a biopsy [4, 5]. In addition, the amount of cellular
material collected is quite small, which necessitates long-term
cultivation that puts the cells at risk of losing chondrogenic
qualities and differentiating into fibroblasts, which can lead to
fibrosis after transplantation [4, 5]. In connection with these
shortcomings, it is especially important to have a selection of
alternative cellular resources.

Induced pluripotent stem cells (iPSCs) are one of the
promising sources of cellular material. Their properties, such
as pluripotency, a wide potential for differentiation into all
types of somatic cells, including chondrocytes, as well as the
unlimited self-renewal ability, make iPSCs an equivalent of
embryonic stem cells (ESCs) that lacks the ethical problems
associated with derivation of the latter [4, 6, 7]. Any type of
somatic cells of the body can be used to make iPSCs [5, 8].

Chondrocytes differentiated from iPSCs have a juvenile
phenotype, which translates into a high proliferation rate and
increased production of extracellular matrix (ECM). This quality
makes healing of articular defects more effective [4, 5]. Thus,
iPSCs are a promising source of cells that can yield a large
amount of biomaterial for cellular technologies. However,
despite a large number of studies investigating the subject,
there is still no standardized protocol that ensures quality
chondrogenic differentiation [9]. An actively used method is
that of directed differentiation, which roughly reproduces the
process of chondrogenesis [10]. The common choice in this
context are recombinant proteins that are similar to the main
chondroinducers in the developmental processes, as well as
various combinations thereof (Fig. 1).

Proteins of the transforming growth factor — (TGFB)
superfamily, such as TGFf proper and those of the bone
morphogenetic protein family (BMP2), are widely used for in
vitro chondrogenic differentiation. One study [11] had TGFB3 as
the only differentiation factor, and the resulting chondrogenesis
in iIPSC cultures was registered as incomplete. Another group
of researchers relied on a combination of TGFB1 and BMP2
[12], and the results they achieved were of better quality. The
effectiveness of in vitro chondrogenesis may also be increased
through differentiation into an MSC-like cell population as
a preparative step; this approach was used in the "classic"
protocol [3], which implies preliminary induction of mesenchymal
precursors with Wnt3a and Activin A. The next step was to induce
chondrogenesis using TGF1 and BMP2, thus creating cartilage
structures with a high expression of chondrogenic markers and a
low level of hypertrophy. A similar protocol that differed in longer
cultivation time has also yielded effective chondrogenesis; the
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Fig. 1. General sequence of chondrogenesis processes. A. Migration of the mesenchyme. B. Prechondrogenic mesenchymal condensation. C. Formation of cell
contacts, synthesis of ECM. D. Intercellular space and microenvironment of differentiating cells. E. Beginning of chondrogenic differentiation. F. Cartilage formation
G. Phase contrast microscopy pictures, magnification x10: 1-56 — spheroids after 1, 2, 3, 4 and 5 weeks of cultivation, 3D cultivation condition
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Table 1. Chondrogenic differentiation protocols

Differentiation (35 days)

Protocol name

In monolayer culture (7 days)

In 3D culture (28 days)

with conditioned medium

"Long" TGFB,, BMP2, FBS 10%
"Short" Base medium with additives
"Combined" Chir 99021, RA — 2 days TGFpB1, BMP2, FBS 10%

RA — 5 days

Conditioned medium from chondrocytes, GlutaMAX

Control groups

Positive control

Base medium with additives, FBS 15%

Base medium with additives, FBS 10%

Negative control

TeSR1, Essential8 (1 : 3)

Base medium without additives

resulting structure was transplanted subcutaneously to a mouse
with subsequent formation of a cartilage of a juvenile phenotype
with a high content of proteoglycans [4]. Retinoic acid (RA) and
retinoids are necessary for the development of limbs, since they
trigger activation of Hox genes involved in determining the area
of bud formation [13]. In vitro, a combination of Chir 99021
(6-[[2-[[4-(2,4-dichlorophenyl)-5-(5-methyl-1H-imidazol-2-yl)-2-
pyrimidinyllamino]ethyljamino]-3-pyridinecarbonitrile, an inhibitor
of glycogen synthase kinase 3 (GSK-3)) and RA promoted
directed differentiation into chondrocytes within a short period of
time [14]. In addition, low molecular weight compounds are quite
simple to use, non-immunogenic and can be efficiently delivered
to cells [15].

The standard 2D culture approach does not match the natural
environment of the cells and limits differentiation significantly [16].
Both in vivo and in vitro, cells need a 3D environment.

One of the common methods of 3D cell cultivation and
differentiation is the production of spheroids [17, 18]. Spheroid
cultures were shown to significantly improve cell proliferation while
maintaining the phenotype and key signals [16, 19]. Moreover,
this 3D culturing technique mimics the process of mesenchymal
condensation at the early stage of cartilage development [20].
There are various methods vyielding spheroids, including the
hanging drop method [21, 22], centrifugation of a suspension of
cells of certain density [23-25], self-aggregation into spheroids in
suspension cultures [2], formation in U-shaped microwell plates
[26-28 ], as well as methods involving biomaterials [29, 30]. The
finished constructs can be effectively cultured under dynamic
conditions, for example, in a 3D orbital shaker [8].

In this work, we followed four protocols of the 3D spheroid
culturing method to form cartilage tissue. Two of the four protocols
were developed by our laboratory. The main purpose of this study
was to identify and compare the features of the resulting structures
and single out the most effective way of differentiation.

METHODS
iPSC cultures

We used the FD4S iPSC line derived from human skin fibroblasts
by the method described in [41], using a non-integrating Sendai
viral vector carrying the genes of transcription factors OCT3/4,
SOX2, KLF4, and C-MYC. The cells were cryopreserved at —80 °C.

Cultivation was conducted at 37 °C with CO, at 5%, in a
mixture of growth media without a mTeSR1 feeder (STEMCELL
Technologies; Canada) and Essential 8 (Thermo Fisher
Scientific; USA), at a 1 : 3 ratio, with 40 pg/ml of gentamicin
(PanEco; Russia). The medium was changed once a day. Upon
appearance of a monolayer, we subcultured the culture at
1 : 3 ratio; to improve cell viability after this procedure, we used
10 uM of the Y27632 Rock kinase inhibitor (StemMACS,
Miltenyi Biotec; Germany).

Differentiation protocols

Chondrogenic differentiation of iPSCs was conducted following
the four tested protocols (Table 1):

—"long" [3};

— "short" [14];

— "combined";

— with conditioned medium.

Cultures of human chondrocytes and fragments of human
articular cartilage were used as a positive control. Cultures of
iPSCs and 3D structures from them served as negative control.

Monolayer cultures

Monolayer iPSC cultures were differentiated for 7 days in
Advanced DMEM base medium (Gibco, Thermo Fisher
Scientific; USA) supplemented with 10 ng/ml of bFGF
(STEMCELL Technologies; Canada), 100x GlutaMAX (Gibco,
Thermo Fisher Scientific; USA), 50x B27 (Gibco, Thermo Fisher
Scientific; USA), 1% insulin transferrin selenite (ITS) (PanEco;
Russia), 50 pg/ml ascorbic acid (Sigma Aldrich; USA), 50 pM
B-mercaptoethanol, 5 pg/ml plasmacin, gentamicin (PanEco;
Russia) and 40 pg/ml gentamicin solution (PanEco; Russia).

For the "long" protocol we also added 10 ng/ml of TGFB1
(Miltenyi Biotec; Germany), 10 ng/ml of BMP2 and 10% FBS to the
base medium. For the "short", "combined" and conditioned medium
protocols the supplements were 10 uM of Chir 99021 (Miltenyi
Biotec; Germany) and 10 nM of RA (Sigma Aldrich; USA) introduced
together for two days, and after that — only 10 nM of RA.

The medium was changed once a day. On the third or
fourth day we subcultured the cultures at the ratio of 1:3 with a
0.25% trypsin solution.

The previously obtained culture of human chondrocytes was
thawed from the cryobank of the Federal Research And Clinical
Center of Physical-Chemical Medicine. The process implied
heating the cryovial in a water bath until the ice completely
disappeared and then washing the DMSO cryoprotector off
the cells in 10 ml of pure Advanced DMEM medium preheated
to +37 °C, the washing done by centrifuging in a 15 ml test
tube (Servicebio; China) at 1000 RPM for 5 min. The precipitate
with chondrocytes was diluted for subsequent cultivation in
Advanced DMEM supplemented with 15% FBS or 10% human
serum. The medium was changed every 4 days; the conditioned
medium was taken out and filtered twice through syringe filters
(0.45 pm pore and 0.22 um pore, respectively).

3D cultures
The spheroids were formed in AggreWell 800 microwell plates
(STEMCELL Technologies; Canada) with Anti-Adherence

Rinsing Solution (STEMCELL Technologies; Canada); we
followed the protocol provided by the manufacturer [31].
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Factoring in the number of cells, we added 1 or 2 ml of medium
with 10 pM Y27632, as per the protocol of chondrogenic
differentiation in 3D cultures, seeking to reach the concentration
of 1-1.5 x 10° cells/ml. Each well of a plate contained 1 ml
of this suspension. The plates with cells evenly distributed in
microwells were incubated at 37°C with CO, at 5% for 24 h.

To prepare Petri dishes for cultivation of spheroids we
applied chloroform-plastic glue strictly to the center of 60 mm
Ultra Low Attachment Petri dishes (Corning Inc.; USA). The
applied chloroform-plastic glue had the shape of a drop with
the diameter of about 1 cm. Then, the cups without lids were
placed under ultraviolet light for 6 hours. Before use, we rinsed
the surface several times with Versene solution [32].

After 24 h of incubation in microwell plates, we carefully collected
spherical cell aggregates using pipettes with tips cut off (to avoid
damage to the spheroids) and then transferred them to prepared
Petri dishes, the medium therein as per the differentiation protocol.
Dishes with spheroids were subjected to dynamic processing in a
3D orbital shaker at 37°C and with CO, at 5%.

For the differentiation of 3D cultures under the "long", "short"
and "combined" protocols, as well as to cultivate the positive
control spheroids, we used the Advanced DMEM base medium
supplemented with 10 ng/ml of bFGF (STEMCELL Technologies;
Canada), 100x GlutaMAX (Gibco , Thermo Fisher Scientific; USA),
50x B27 (Gibco, Thermo Fisher Scientific; USA), 1% insulin-
transferrin selenite (ITS) (PanEco; Russia), 50 ug/ml of ascorbic
acid (Sigma Aldrich; USA ), 50 pM of B-mercaptoethanol, 5 pg/ml
of plasmacin, gentamicin (PanEco; Russia) and 10 ml/L 100x
penicillin/streptomycin solution (PanEco; Russia). For the "long"
and "combined" protocols we also added 10 ng/ml of TGFB1
(Miltenyi Biotec; Germany), 10 ng/ml of BMP2, 10% FBS to
the medium. For the conditioned medium protocol we used the
conditioned medium from a culture of human articular chondrocytes
supplemented with 200x GlutaMAX. For cultivation of the positive
control spheroids the medium was supplemented with 10% FBS.
Negative control spheroids were cultured in Advanced DMEM
supplemented with antibiotics and 200x GlutaMAX.

The period of differentiation of spheroids was 28 days. The
medium was changed every 4 days. We evaluated morphology
of the spheroids every 7 days using an Olympus IX53F phase
contrast microscope (Olympus; Japan) and CellSens Standart
morphometry software.

Immunofluorescence analysis

For the purposes of immunocytochemical staining of 3D cultures,
every 7 days of cultivation we transferred the spheroids into
48-well plates that had bottoms of wells preliminarily covered
with a 0.1% gelatin solution. Within 1 to 2 days, the spheroids
attached and spread over the surface.

Monolayer cultures fixed with 4% paraformaldehyde (PFA)
and attached organelles were treated with 0.1% Triton as

Table 2. Primers used in the work

OPUNIMMHAJIBHOE NCCJIEQOBAHWUE | PETEHEPATVIBHAA MEOVLIVIHA

follows: for 20 minutes in order to stain for the nuclear marker;
for 10 minutes — to stain for the surface and cytoplasmic
markers. After permeabilization, the cultures were treated
(for 30 minutes) with a 0.01 M PBS blocking solution containing
3% goat serum and 0.1% Tween.

Monolayer cultures, as well as spheroids at all stages of
differentiation, were stained with primary antibodies to the
nuclear marker of chondrogenesis Sox 9 (Rabbit, 1 : 400,
Invitrogen; Thermo Fisher Scientific, USA), to the proteoglycan
cartilage ECM marker agrecan (Mouse, 1 : 500, Invitrogen;
Thermo Fisher Scientific, USA), fibrillar ECM hyaline cartilage
marker type Il collagen (Rabbit, 1 : 200; Abcam, UK) and
fibrocartilage marker type | collagen (Rabbit, 1 : 800, Invitrogen;
Thermo Fisher Scientific, USA), as well as the surface marker of
CD105 prechondrogenic mesenchyme (Human, 1 : 500; Sony,
Japan). At room temperature, the staining with primary antibody
solutions based on blocking solution lasted for 1.5 hours, while
at 4 °C the duration thereof was 12 hours.

Alexa Fluor 488 (Goat, Anti-Mouse, 1 : 500), Alexa Fluor
555 (Goat, Anti-Rabbit, 1 : 500), and Alexa Fluor 546 (Goat,
Anti-Human, 1 : 500) were used for staining with secondary
antibodies (Invitrogen; Thermo Fisher Scientific, USA). The
process lasted 1 hour and was conducted in the dark. Nuclei
were stained with 100 ng/ml DAPI (Sigma Aldrich; USA).

Stained preparations were examined using an Olympus
IX53F fluorescence microscope with four fluorescence filters
(Olympus; Japan) and CellSens Standard morphometry software.

Real-time polymerase chain reaction (PCR)

To initiate cell lysis in monolayer cultures and spheroids we
used RLT buffer (QIAGEN; Germany) supplemented with
10 pl/ml of B-mercaptoethanol. Spheroids, in batches of 3 to
5 pieces, depending on their size, and monolayer cultures were
pipetted into 600 pl of RLT for lysing.

To isolate the total RNA, we used RNeasy Plus Mini
Kit (QIAGEN; Germany) following the instructions supplied
therewith [33]. Total RNA was purified from genomic DNA with
the help of DNase solution (SibEnzyme; Russia)

MMLV RT kit (Evrogen; Russia) was used, as described in
the manual [34], to synthesize the first cDNA strand from the
RNA template.

For real-time PCR, we added 5 pl of 5x gPCRmix-HS SYBR
(Evrogen; Russia), 0.8 pl of 10 yM primer, 18.2 pl of water and
1 pl of cDNA matrix (Table 2) to each well of a 96-well plate (SSlbio,
Scientific Specialties; USA), . The reaction was enabled by a C10000
Touch version of 1000 CFX Manager nucleic acid amplification
thermal cycler (Bio-Rad; USA) and CFX Manager software. The
number of cycles was 39. SYBR (Evrogen; Russia) was used as
the probe. To increase specificity of the reaction we used a "hot
start" polymerase, HS Tag DNA polymerase (Evrogen; Russia), and
selected the optimal primer annealing temperature (60 °C). cDNA

Gene name Sequence 5'-3' Product length, b.p.
509 A CACGTOGCGOAAGTCOATAG 263
ACAN Ft GCTOACAGATOTGOCTGTCE 167
coLza P COATTGATGGTTTOTGOAAACG 142
YWHAZ A COGOOAGGACAMAGCAGTAT o
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Fig. 2. Immunocytochemical analysis of monolayer cultures. A. Use of TGFB1, BMP2 and 10% FBS. B. Using Chir99021 and RA. C. Articular chondrocyte culture,
positive control. E. FD4S iPSC culture, negative control. 1 — aggrecan (green) and Sox9 (red), 2 — type | collagen (red), 3 — type Il collagen (red), 4 — CD105 (red).

Scale bar — 200 microns

isolated from iPSCs was used as a negative control in assessment
of specificity of the reaction once the results were available.

Microsoft Excel enabled analysis of the results (AACt
method). Mean values and confidence intervals are shown. For
statistical analysis, we used the Welch's t-test that accounts for
the possible differences in standard deviations of means of two
groups of independent samples.

Histological analysis

To make paraffin sections, we sequentially fixed spheroids and
fragments of cartilage, treated them with xylene and ethanol
(concentrations of 70, 80, 96, and 100%) to dehydrate and
degrease, and poured liquid paraffin. Then we cut series of
paraffin sections 4 pm thick. Cryosections of spheroids (7 pm
thick) were prepared according to the protocol described earlier
[35]. For that purpose, we used the Shandon Cryotome FSE
resin (Thermo Fisher Scientific; USA) to form a histological block.
The sections were stained with hematoxylin-eosin, picrosirius
red, and safranin O. After staining they were dehydrated and
embedded in polystyrene.

The photographed of the sections were taken with a
DM4000 B LED microscope (Leica; Germany).

RESULTS

Differentiation in monolayer cultures

Undifferentiated iPSC cultures were dense colonies of small
cells with a high nuclear-cytoplasmic ratio; the morphology

of such colonies was described earlier [36]. On the second
day of differentiation by exposure to Chir 99021 and RA

or recombinant factors TGFB1, BMP2, and 10% FBS, the
cells assumed a rounded shape. Following the Chir 99021
differentiation protocols, we registered growth in cell mortality,
which was assessed by staining with a trypan blue solution (the
volume of dead cells that included the dye reached 30-35%
of the population). On the 4th day of differentiation the cells
assumed a polygonal and elongated shape. On the 7th day we
noticed individual populations of chondrocyte-like cells that had
a rounded shape and a large nucleus. Also, on the second and
third day of differentiation we observed budding cell clusters in
the experimental group cultures, the effect especially pronounced
in cultures differentiated according to the Chir 99021 protocol.

Analyzing the results of immunocytochemistry we discovered
a significant fluorescence on the part of aggrecan and type | and
Il collagens in monolayer cultures obtained following protocols
implying the use of both recombinant factors TGFf1 and BMP2
and Chir 99021 and RA (Fig. 2). However, the Sox9 synthesis
was most effective in cultures differentiated with the help of
TGFB1 and BMP2 (Fig. 2A1). As for the CD105 mesodermal
marker, it synthesis was low in experimental and control groups
(Fig. 2A4-E4), although a small signal was observed in cultures
differentiated with Chir 99021 (Fig. 2B4).

The analysis of results of real-time PCR revealed that the
indicators of expression of chondrogenic markers in the samples
were comparable to those registered in the positive control group.
The use of protein factors TGFB1 and BMP2 made the expression
of SOX9 higher than application of Chir 99021 and RA (Fig. 3).

Differentiation in spheroid cultures

Immediately after the formed cell aggregates were put in 3D
cultivation conditions they acquired an irregular shape and their
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surface became uneven, but on the 35" day of differentiation
all spheroids (all protocol groups and control groups) became
whitish translucent structures with a smooth shiny surface
(Fig. 1G). The only exception were the cultures developing in
3D cultivation conditions following the conditioned medium
protocol.

On the 14" and 21¢' day of differentiation we observed
nonintense fluorescence of aggrecan in the constructs of
cultures of spheroids cultivated in 3D conditions, all protocols
(Fig. 4). The highest fluorescence intensity of this marker was
recorded on days 28 and 35 in spheroids of the "combined"
protocol (Fig. 4B3, 4). On the 21st and 28th days we also
registered a high level of synthesis of aggrecan in spheroids
obtained following the conditioned medium protocol (Fig. 4D1-3).
In the "long", "combined" and conditioned medium protocols
the level of ACAN expression was comparable to that in the
spheroids of the positive control group. At the same time, on
the 28th and 35th days of differentiation, ACAN expression
significantly increased in the spheroids of "combined" and
conditioned medium protocols (Fig. 5A).

The synthesis of Sox9 was observed in spheroids formed
following the "combined" protocol at each step, and the intensity
of fluorescence of this marker was increasing as differentiation
progressed (Fig. 4B1-4). As for other protocols, we registered
intense Sox9 fluorescence signals on the 28th day in the "long"

protocol spheroids and on the 35th day in the conditioned
medium protocol spheroids (Fig. 4A3, D4). The fluorescence
associated with this marker was also seen in spheroids of the
negative control group (Fig. 4E1-4). The results of PCR analysis
of SOX9 expression show its comparability with the indicators
peculiar to the positive control group in samples of the "long"
and "combined" protocol groups (Fig. 5B).

The intensity of fluorescence of type | collagen was
recorded as high in all experimental groups, but the highest
values were registered in the "long" and "combined" protocol
groups. The expression of COL1A2 increased with the progress
of differentiation in spheroids of all protocol groups (Fig. 6A).
The highest rates were observed in the "long" and "combined"
protocol group samples.

In the spheroids formed following "long", "combined"
and conditioned medium protocols the observed intensity of
fluorescence of type Il collagen was high, and it can be said
that it increased with time. The expression of COL2A1 was
pronounced in spheroids of all differentiation protocol groups
(Fig. 6B). The maximum values were registered in the samples
of "long" and "combined" protocol groups: they were several
times greater than expression seen in the positive control group.

The synthesis of CD105 was detected at the beginning
of cultivation under 3D conditions. The fluorescence of this
marker was well expressed in the "long" and "combined"
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protocol spheroids, but it significantly decreased by the end of
differentiation.

Examining the sections of "long" and "combined" protocol
spheroids stained with picrosirius red we saw bright pink
collagen fibers covering the entire area of said sections (Fig. 7).
However, staining of spheroids of all protocol groups with
safranin O was not intense (Fig. 7).

“I_Ong"

Hematoxylin-
eosin

Picrosirius red

Safranin O

"Combined"

DISCUSSION

Comparing the morphological characteristics of monolayer
cultures, we noted that iPSC differentiation can be induced
with both Chir 99021 and RA and TGFB, BMP2, and 10% FBS.
The elongated polygonal shape the cells assume on the 4th
day may indicate that their morphology becomes MSC-like

Protocol

With conditioned medium Positive control ~ Negative control

Fig. 7. Histological analysis of 3D spheroid cultures of different differentiation protocols. Differentiation protocols: "long" (A), "short" (B), "combined" (C), with conditioned
medium (D). Control groups: positive control (fragments of articular cartilage) (E), negative control (F). Type of histological staining: 1 — hematoxylin-eosin, 2 —

picrosirius red, 3 — safranin O
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during chondrogenic induction. The increased cell death that
we observed in cultures differentiated with Chir 99021 and RA
is most likely associated with the action of Chir 99021, since,
as shown in the past experiments, this molecule enhances
apoptotic activity [14]. Self-aggregation of cells with the
formation of hyaline-like structures peculiar to the early stages
of chondrogenic differentiation, when adhesion molecules
actively form and accumulate (10).

The positive effect exogenous presence of TGFB1 and
BMP2 has on the synthesis and expression of Sox9 in
monolayer cultures is most likely the result of participation of
these molecules in stimulation and stabilization of production
of this transcription factor [37]. Since Chir 99021 mimics
mesoderm-inducing signals, the presence of CD105 can
be explained by similarity of the culture, at that stage of
differentiation, to the early prechondrogenic mesenchyme
[1, 14]. It can be concluded that use of both TGFB1, BMP2,
and 10% FBS and Chir 99021 and RA triggers fairly efficient
differentiation in monolayer cultures.

Microwell plates were used to make spheroids. In such
plates, cell aggregation is gravity-driven, which may lead to
formation of cell conglomerates of irregular shapes [27]. Cartilage
structures that were obtained by other researchers from spheroid
cultures were ultimately translucent and whitish, with a smooth
surface [3]. At the final stages of cultivation, the spheroids of all
protocol groups except for the conditioned medium group has
similar characteristics. The exception may be the result of a
slower compaction rate, which disallows the outer layer cells to
generate a sufficient number of intercellular contact molecules.

In our study, the expression of chondrogenic markers in
groups using TGFB1 and BMP2 were fairly high. In addition,
we saw spontaneous differentiation of iPSCs in negative control
spheroids, which coincided with registration of fluorescent
signals of Sox9 and type Il collagen, as well as expression
of COL2A1. The production of cartilage ECM is largely a
mechanodependent process, therefore, we could observe the
synthesis of type Il collagen in response to the presence of cells
in dynamic conditions [38, 39].

The synthesis of CD105 in spheroid cultures on the 14th
and 215t days can be explained by the transition from MSC-like
to chondrocyte phenotype, which was happening as cells in
spheroids were differentiating. in vivo, CD105, along with other
surface markers such as CD34, CD44, and CD45, is one of
the markers characteristic of prechondrogenic mesenchymal
cells [1, 40].

The increased synthesis and expression of type | collagen
in spheroids of all protocol groups indicate that the resulting
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