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PHYSICAL AND CHEMICAL CRITERIA FOR HAZARD ASSESSMENT OF CNS-
ACTIVE XENOBIOTICS 
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Introducti on. Forensic medical examinations frequently encounter poorly understood, potentially hazardous psychoactive substances. At the same time, 

information on the biolog ical activity of such substances may be either fragmentary and contradictory or absent altogether. Therefore, the development of 

approaches to predicting the health hazard of xenobiotics is an urgent task of emergency medicine.

Objective. To study the relationship between physicochemical properties and the hazard rate of one class of CNS-active substances using the methods of 

mathematical analysis followed by scientific substantiation of criteria for preliminary hazard assessment of narcotic drugs.

Маterials and methods. The study models included the known structures of narcotic analgesics, divided into three groups according to their potential 

hazard rate. The physicochemical properties of such substances, i.e., molecular weight, polarity, polar surface area, distribution coefficients, and basic disso-

ciation constants were considered as potential hazard factors. Linear discriminant analysis was used to identify the relationship between the physicochemical 

properties of psychoactive substances and their hazard potential.

Results. The considered example of one class of CNS-active substances confirms the relationship between their hazard rate and the physicochemical 

properties affecting their redistribution from the central bloodstream to the central nervous system. Physicochemical criteria for predicting the hazard rate of 

psychoactive substances are proposed. These criteria serve as classification functions that distinguish groups of model substances.

Conclusions. The physicochemical properties of psychoactive substances and the strength of their binding to target receptors equally determine the char-

acteristics of their toxic effect. The formulated classification functions, calculated based on the physicochemical properties of substances, can be used for a 

preliminary hazard assessment of xenobiotics during their detection in biological samples.
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ФИЗИКО-ХИМИЧЕСКИЕ КРИТЕРИИ ОЦЕНКИ ОПАСНОСТИ ЦНС-АКТИВНЫХ КСЕНОБИОТИКОВ

Д.В. Криворотов , А.И. Николаев, А.С. Ради лов, В.Р. Рембовский, В.А. Кузнецов

Научно-исследовательский институт гигиены, профпатологии и экологии человека Федерального медико-биологического агентства, 

Ленинградская область, Россия

Введение. Судебно-медицинская экспертиза часто сталкивается с малоизученными, потенциально опасными психоактивными веществами. При 

этом информация о биологической активности таких веществ отрывочна и противоречива или вообще отсутствует. Поэтому разработка подходов 

к прогнозированию опасности ксенобиотиков является актуальной задачей медицины экстремальных ситуаций.

Цель. Изучение взаимосвязи физико-химических свойств и степени опасности представителей одного из классов ЦНС-активных веществ с ис-

пользованием методов математического анализа и последующим научным обоснованием критериев предварительной оценки опасности нарко-

тических средств.

Материалы и методы. В качестве модельных объектов исследования использовали известные структуры наркотических анальгетиков, раз-

деленные на три группы по степени потенциальной опасности. В качестве факторов потенциальной опасности таких веществ рассматривали 

их физико-химические свойства, такие как: молекулярная масса, полярность, площадь полярной поверхности, коэффициенты распределения 

и константы основной диссоциации. Для выявления связи физико-химических свойств и степени опасности психоактивных веществ использова-

ли линейный дискриминантный анализ.

Результаты. На примере представителей одного из классов ЦНС-активных веществ показана связь степени их опасности с физико-химическими 

свойствами, влияющими на перераспределение таких веществ из центрального кровотока в ткани центральной нервной системы. Для прогно-

зирования степени опасности психоактивных веществ предложены физико-химические критерии — классификационные функции, достаточно 

хорошо разделяющие группы модельных веществ между собой.

Выводы. Показали, что физико-химические свойства психоактивных веществ определяют особенности их токсического действия в не меньшей 

степени, чем сила их связывания с целевыми рецепторами. Сформулированные в работе классификационные функции, рассчитываемые на ос-

новании физико-химических свойств веществ, могут быть использованы для предварительной оценки степени опасности ксенобиотиков в ходе 

их выявления в биологических пробах.
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INTRODUCTION

The forensic medical examination of poisoning cases with 

psychoactive substances is carried out using targeted 

analytical methods, such as gas chromatography–mass 

spectrometry (GC-MS) and liquid chromatography-tandem 

mass spectrometry (HPLC-MS/MS), to detect known xe-

nobiotics and their metabolites [1]. Untargeted testing using 

high-resolution liquid chromatography-mass spectrometry 

(HPLC-HRMS) technologies can be used to identify the 

chemical structure of new substances appearing in illicit 

traffic. Substances identified in biological samples can 

pose a significant threat [2–5]. Although the safety of a 

particular drug can be measured by determining its thera-

peutic index, calculated as the ratio of the drug maximum 

dose that does not exhibit toxicity to the dose that pro-

vides the desired effect (LD
50

/ED
50

), this approach cannot 

be used for substances detected during forensic medical 

examination. In addition, information about the hazardous 

pharmacological activity of xenobiotics may frequently be 

either fragmentary and contradictory or absent altogether, 

for a number of reasons:

• rapid emergence of new psychoactive chemicals that 

are illegally marketed in the absence of reference ma-

terials and methods for their determination in biological 

and other environments [6];

• legislative restrictions on the research of narcotic drugs 

with no intended medical use [6];

• insufficient standardization of methods for studying the 

pharmacological properties of narcotic drugs [7, 8];

• complexity of the interspecific transfer of preclinical re-

search results, leading to an underestimation of the tox-

icity of narcotic drugs [9];

• impossibility of comparing the biological effects of 

drugs that are not standardized in terms of purity and 

isomeric composition [3].

The above reasons hamper the medicobiological as-

sessment of new psychoactive substances, although there 

has been a growth in the number of cases of illicit traffick-

ing both in Russia and globally [4, 8–10]. In order to be able 

to predict the potential hazard of CNS-active xenobiotics 

and other chemical substances, criteria for a straightfor-

ward determination of their toxic effect are required. 

It is common knowledge that the toxicity of many nar-

cotic analgesics is associated with opioid-induced respira-

tory depression, which result in the patient’s death in the 

absence of proper treatment [11]. The central generator 

of breathing patterns in the brainstem is the preBötzinger 

Complex and the Kolliker–Fuse nucleus. In these areas of 

the brain, only 70–140 neurons are involved in responding 

to an increase in carbon dioxide (pCO
2
) levels and a de-

crease in blood oxygenation (pO
2
), which is necessary for 

the reflex mechanism of respiration [12]. Accordingly, the 

mechanism of regulation of respiratory activity is extremely 

vulnerable to substances capable of selectively affecting 

these targets in the brain. It can be assumed that the health 

hazard of CNS-active xenobiotics, expressed in terms of 

strength and speed, is mediated, on the one hand, by fac-

tors determining the degree of their effect on target recep-

tors in the neurons of these brain regions, and, on the other, 

by factors determining the transfer of xenobiotics from the 

central bloodstream to their biological targets in the brain.

The strength of narcotic analgesics is often associ-

ated with the inhibition constants of opioid receptors [13]. 

However, under standardized conditions, morphine and 

fentanyl, which differ significantly in the strength of their an-

algesic effects, possess comparable inhibition constants 

(K
i
) of the μ-opioid receptors (MOR) (Table 1) [5, 7].

Upon closer examination, no direct relationship exists 

between the analgesic activity of opioids and the strength 

of their binding to the receptor, which was earlier confirmed 

by numerous examples [14]. Thus, according to Boström 

et al., oxycodone, which binds to opioid receptors more 

than 20 times less strongly than morphine (Table  1), ex-

hibits a 1.8-fold greater analgesic activity. This effect can 

be explained by its higher concentration in the target brain 

tissues than in the blood. Morphine, on the contrary, has an 

achievable concentration in the brain of rats several times 

lower than in the blood [15]. Thus, the binding of small mol-

ecules to opioid receptors in most cases is the determining 

condition for manifestation of analgesic activity, although 

being not the main factor in the strength and speed of its 

manifestation (similar to the classical works of N.V. Lazarev 

on the manifestation of narcotic properties in hydrocarbons 

(non-electrolytes)) [16]. The hazardous effects of opioid an-

algesics are also related to their properties, which deter-

mine the characteristics of entry into target tissues, organs, 

and targets in the central nervous system (CNS) through 

the blood-brain barrier (BBB).

The BBB acts as a filter through which nutrients flow 

from the bloodstream to the brain and in the opposite di-

rection, while the waste products of the nervous tissue are 

removed. The BBB protects the brain from microorgan-

isms, toxins, cellular and humoral factors of the immune 

system, and xenobiotics circulating in the blood. Drugs act-

ing on CNS targets must have the ability to penetrate such 

a biological barrier. Currently, three main ways of transport-

ing small molecules to brain tissues are being considered, 

including unidirectional penetration into the brain through 

passive and facilitated diffusion, due to a concentration 

gradient of substances and requiring no additional energy; 

active transport, requiring energy (ATP) for the transport 

of molecules against a concentration gradient; passive 

diffusion for moderately lipophilic medications and active 
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transport mechanisms for penetration through the BBB of 

predominantly polar molecules [17, 18].

The membranes separating the cells of the BBB lay-

ers act as a channel for the diffusion of organic molecules 

through the BBB cellular layers. In order to pass through 

such a channel, a molecule dissolved in the blood must be 

transformed during a multi-stage physicochemical process 

of desolvation and charge loss for a non-covalent interac-

tion with the phospholipid bilayer. This process is similar to 

that of ligand-receptor interaction, although with lower ster-

ic requirements. Therefore, for penetration into the brain, 

small molecules must exhibit a set of specific properties, 

such as optimal geometric size, ionization properties, flex-

ibility, etc. Thus, lipophilicity is a parameter that correlates 

well with the analgesic power of anesthetics and analge-

sics. This parameter, expressed in the form of LogP [16], is 

now considered as a composite descriptor describing the 

contribution of steric intermolecular interactions and that of 

formed hydrogen bonds [17]. Descriptors of hydrogen bond 

formation are properties of molecules, such as polarizabil-

ity, polar surface area, the number of donors and acceptors 

of hydrogen bonds, or heteroatoms capable of their forma-

tion. Polar compounds with a high potential for hydrogen 

bonding, e.g., peptides, cannot easily penetrate the BBB. 

Polarizability, underlying a number of physical properties 

of substances, including surface tension and solubility, is 

characterized by a dipole moment. The polar surface area 

is defined as the sum of the surfaces of all polar atoms or 

molecules, primarily oxygen and nitrogen. Medications act-

ing on the CNS possess smaller polar surface areas (PSA) 

than other classes of drugs, usually no more than 90 A2. 

Molecules with a polar surface area of more than 140 A2 do 

not readily penetrate cell membranes.

Geometric and steric factors expressed by the mo-

lecular weight, molecular volume, and flexibility of the 

molecule, are important for diffusion through biological 

membranes. For effective penetration through the BBB, 

the molecular weight should not exceed 400  Da. The 

molecular volume as a function of the molecular weight 

and structure takes all the conformations available to the 

molecule into account. The presence of more than ten 

rotating connections in structures correlates with a de-

crease in their bioavailability and CNS activity. The limited 

flexibility and compactness of molecules with fewer polar 

groups on their surface capable of functioning as donors 

and acceptors of hydrogen bonds is an advantage for 

substances acting on the CNS; therefore, the parameters 

describing these properties are significant factors related 

to the CNS activity of xenobiotics.

Most CNS-active substances have a nitrogen atom ca-

pable of ionization in the blood plasma. The resulting charge 

of the protonated molecule negatively affects its ability to 

diffuse through the dielectric layers of phospholipid mem-

branes, compared to neutral molecules [18]. However. the 

presence of a positive charge on the nitrogen atom is con-

sidered an important factor for the electrostatic interaction 

of substances with the key amino acids of target receptors 

[19]. The molecule ionization degree in the buffer system 

of the blood and cerebrospinal fluid is a dualistic factor re-

lated both to the rate of entry of active molecules into CNS 

tissues and influencing their ability to bind to CNS targets 

[20, 21]. Thus, the severity of the toxic effect of CNS-active 

substances, due to the effectiveness of their entry into the 

brain, is determined by the sum of physicochemical factors 

related to their chemical structure. These factors can be 

experimentally evaluated or calculated.

This work is aimed at studying the relationship between 

the physicochemical properties of one class of CNS-active 

substances and their health hazard potential using math-

ematical analysis. On this basis, criteria for preliminary haz-

ard assessment of narcotic drugs are substantiated.

MATERIALS AND METHODS

Table 2 presents a sample of model objects used in the 

study selected from the known structures of narcotic anal-

gesics. The objects under consideration were divided into 

three groups: 

1. Group 1 includes narcotic analgesics ever used in 

medicine [14], taking into account possible side effects dur-

ing their medical use. These substances are considered as 

those potentially capable of manifesting health hazard.

2. Group 2 includes narcotic substances not intended 

for medical use, but purposefully created for illegal human 

use, taking into account information about cases of mass 

poisoning with such substances [22]. These substances 

Table 1. Inhibition constants of μ-opioid receptors by some narcotic analgesics

Low-affinity ligands,
K

i
>100 nM

Morphine-like ligands,
K

i
=1–100 nМ

High-affinity ligands,
K

i
<1 nM

medication K
i 
(nM) MOR medication K

i 
(nM) MOR medication K

i 
(nM) MOR

tramadol 1248.6 hydrocodone 41.58 butorphanol 0.76

codeine 734.2 oxycodone 25.87 levorphanol 0.41

meperidine 450.1 diphenoxylate 12.37 oxymorphone 0.40

propoxyphene 120.2 alfentanil 7.39 hydromorphone 0.36

pentazocine 117.8 methadone 3.37 buprenorphine 0.21

nalbuphine 2.11 sufentanil 0.13

fentanyl 1.34

morphine 1.16

Table prepared by the authors using data from [7]
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are considered as those potentially capable of manifesting 

high health hazard.

3. Group 3 included highly active drugs, the use of 

which in medicine requires precautions for their controlled 

dosing, as well as veterinary and research drugs not in-

tended for human consumption [3, 14]. These substances 

are considered as those potentially capable of manifesting 

extremely high health hazard. 

The physicochemical properties that can be meas-

ured without laborious experiments and reference materi-

als of controlled substances were considered as potential 

descriptors of the hazard rate of CNS-active xenobiotics 

(see Table 3). The molecular weight of substances was de-

termined by GC-MS; the distribution constants “octanol/

water” and acid-base dissociation correlated with retention 

times were established by HPLC [21, 23]. In cases where 

information about the structural formula of a xenobiotic 

can be found in mass spectrometry databases, computer 

simulation methods using accessible and reliable calcula-

tion algorithms are used to determine its physicochemical 

properties [24].

The values of the selected physicochemical parameters 

for the training sample of substances were calculated using 

the ACD/Percepta software [24]. The methods of descrip-

tive statistics and the method of linear discriminant analy-

sis using the Statistica 6.0 statistical analysis application 

were used for mathematical data analysis. We previously 

showed the effectiveness of multidimensional statistics (ch-

emometry) methods, in particular linear discriminant analy-

sis and multiple regression for calculating toxic properties 

of refrigerants based on the physicochemical parameters 

of molecules [25], for assessing the degree of exposure to 

xenobiotics and noninvasive diagnosis of a number of dis-

eases based on the spectral characteristics of biological 

samples1 [26].

DISCUSSION

The generated sample contained 53 anonymized records 

of the calculated values of the physicochemical proper-

ties of the model CNS-active substances described in the 

literature (Table 2). The structures of the analyzed model 

preparations were used for calculating the selected phys-

icochemical quantities, the results of which are shown in 

Table 4. 

Table 5 presents the average values of the physico-

chemical descriptors used to construct regression models 

and to determine the limits of their applicability.

The average values of the physicochemical quanti-

ties presented in Table 5 show that the narcotic sub-

stances in Group 2 demonstrate the highest lipophilicity 

(LogP). At the same time, the ratio of the average lipo-

philicity values of the drug groups in water and blood 

plasma — LogP and LogD
7.4

 — shows that the lipophilic-

ity of Groups 1 and 2 significantly decreases at physi-

ological pH. Conversely, the highly active substances 

belonging to Group 3 and having a lower value of the 

basic ionization constant demonstrate high lipophilicity 

not only in water, but also in blood plasma. This empha-

sizes the relationship between lipophilicity and the ability 

Table 2. Characteristics of the training sample of model substances

Group Model objects Information source Structures number Assessment of model objects

1 Medical narcotic analgesics [7] 17 substances with a hazard risk

2 Non-medical narcotic analgesics [22] 18 substances with a high hazard risk

3 Highly active narcotic analgesics [3, 14] 18 substances with an extremely high hazard risk

Total number of training sample structures 53

Table prepared by the authors using data from [3, 7, 14, and 22]

Table 3. Selected physicochemical descriptors of the hazard level of CNS-active xenobiotics 

Parameter 
designation

Parameter Description Dimension Determination possibility 

LogP / LogD
7.4

The partition coefficient of the substance in the octanol–water system re-

flects the lipophilicity of the substances; the ability to dissolve in fats, lipids, 

and other media at pH 7.0 (LogP) or at physiological pH (LogD
7.4

) during the 

distribution of substances in the body.

–
HPLC is experimental, by calculation 

methods

pK
b

The basic dissociation constant determines the lipophilicity of ionized 

molecules.
–

HPLC is experimental, by calculation 

methods

MW
The molecular weight of the substance reflects the steric factors affecting 

the distribution of substances in the body.
Da

HPLC-MS is experimental, by 

calculation methods

TPSA
The topological polar surface area is a calculated parameter, associated 

with the ability of substances to cross biological membranes
Å2 

(10–16cm2)
by calculation methods

Polar

Polarizability — the physical property of substances to acquire an electric 

or magnetic dipole moment in an external electromagnetic field and associ-

ated with the ability of substances to form hydrogen bonds and overcome 

biological membranes

Å3 

(10–24cm3)
by calculation methods

Table prepared by the authors

1 Rembovsky VR, Radilov AS, Dulov SA, Nikolaev AI. Assessment of the degree of exposure to xenobiotics based on the spectral characteristics of water-protein 

complexes of blood plasma. Methodological recommendations 12.11. Moscow: FMBA; 2012 (In Russ.).
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of substances to enter CNS tissues during redistribution 

in the blood-brain system.

The physicochemical criteria that can be used for haz-

ard assessment of CNS-active substances were estab-

lished based on paired correlation coefficients between 

the physicochemical descriptors shown in Table 6. It can 

be seen that most descriptors are weakly correlated with 

one another. The strongest correlation is observed be-

tween the LogD
7.4

 and LogP values since these are highly 

similar parameters in nature. The difference between them 

is related to the pH values at which they are determined, 

being due to the degree of ionization of the molecules of 

substances at these pH values. This is indicated by a rather 

strong correlation (R = 0.97) between the calculated value 

(LogD
7.4

 – LogP) and the pKb value.

A strong correlation is also observed between the val-

ues of MW and Polar. This is likely to be due to a propor-

tional increase in the integral polarizability of the molecule, 

Table 4. Calculation of physicochemical descriptors 

No. Model object
Group 

number

Calculated physicochemical descriptors 

LogD
7.4

LogP MW TPSA Polar pK
b

1 fentanyl 1 3.32 4.08 336.47 23.55 41.09 8.08

2 buprenorphine 1 3.48 4.45 467.64 62.16 52.07 8.26

3 methadone 1 3.12 4.44 309.44 20.31 38.02 8.70

4 levorphanol 1 1.94 3.21 257.37 23.47 30.49 8.61

5 hydrocodone 1 0.57 1.31 299.36 38.77 32.32 8.06

6 pentazocine 1 3.05 3.79 285.42 23.47 34.96 8.04

7 butorphanol 1 1.96 3.52 327.46 43.7 37.64 8.85

8 propoxyphene 1 3.97 4.85 339.47 29.54 40.58 8.23

9 meperidine 1 1.22 2.44 247.33 29.54 28.25 8.60

10 nalbuphine 1 0.98 2.03 357.44 73.16 38.11 8.35

11 tramadol 1 0.71 2.54 263.37 32.7 30.90 9.24

12 hydromorphone 1 0.53 1.29 285.33 49.77 30.41 8.03

13 codeine 1 0.34 1.21 299.36 41.93 32.84 8.21

14 morphine 1 -0.18 0.69 285.33 52.93 30.93 8.16

15 oxycodone 1 0.16 0.91 315.36 59.00 32.95 8.06

16 diphenoxylate 1 5.42 5.72 452.58 53.33 52.93 7.40

17 oxymorphone 1 0.25 1.00 301.33 70.00 31.03 8.03

18 4-fluorophenyl 2 3.11 3.87 354.46 23.55 41.09 8.07

19 furanyl-fentanyl 2 3.35 4.12 374.47 36.69 44.25 8.08

20 3-methylthiophentanyl 2 2.96 4.09 356.52 51.79 42.32 8.50

21 β-hydroxy-thiophentanyl 2 2.38 2.77 358.49 72.02 41.06 7.58

22 β-hydroxy-fentanyl 2 2.87 3.07 352.47 43.78 41.70 7.15

23 α-methyl-thiophentanyl 2 3.15 4.04 356.52 51.79 42.25 8.23

24 α-methyl-fentanyl 2 2.75 4.09 350.49 23.55 42.89 8.73

25 acetyl-α-methylfentanyl 2 2.56 3.91 336.47 23.55 41.05 8.73

26 3-methylbutyril fentanyl 2 4.21 4.98 364.52 23.55 44.79 8.08

27 remifentanil 2 1.77 1.85 376.44 76.15 40.06 6.70

28 4-methoxy-butyrylfentanyl 2 3.55 4.33 380.52 32.78 45.58 8.10

29 thiofentanyl 2 2.66 3.79 342.49 51.79 40.45 8.50

30 4-fluoro-butyrylfentanyl 2 3.69 4.44 368.48 23.55 42.93 8.07

31 3-methylfentanyl 2 3.36 4.13 350.49 23.55 42.96 8.08

32 acrylic fentanyl 2 2.99 3.75 334.45 23.55 40.98 8.08

33 acetylfentanyl 2 2.98 3.74 322.44 23.55 39.25 8.08

34 alfentanil 2 1.99 2.04 416.51 81.05 46.25 6.53

35 sufentanil (SF) 2 2.91 3.77 386.55 61.02 44.80 8.20

36 pyrrole analog SF No.1 3 2.33 2.55 383.48 54.78 44.16 7.19

37 etorfin 3 2.30 3.09 411.53 62.16 45.51 8.07



МЕДИЦИНА ЭКСТРЕМАЛЬНЫХ СИТУАЦИЙ | 2025, ТОМ 27, № 120

ОРИГИНАЛЬНАЯ СТАТЬЯ | ТОКСИКОЛОГИЯ

associated with an increase in the number of polarizable 

fragments with increasing mass. An analysis of the obtained 

correlations between the physicochemical properties in the 

training groups of CNS-active substances showed that the 

values considered, either by themselves or in pairs, do not 

allow for an unambiguous distribution of substances to one 

of the three groups of hazardous substances. 

A discriminant analysis was used to analyze the entire 

data set of physicochemical properties of model substanc-

es in order to identify their relationship with the degree of 

their health hazard. Discriminant analysis, as a branch of 

multidimensional statistical analysis, includes statistical 

methods for classifying multidimensional observations 

in a situation where the researcher has a priori so-called 

No. Model object
Group 

number

Calculated physicochemical descriptors 

LogD
7.4

LogP MW TPSA Polar pK
b

38 heterocyclic analogue CF No.1 3 3.05 3.10 506.59 90.47 54.93 6.43

39 heterocyclic analogue SF No.1 3 1.80 2.67 462.58 65.45 53.43 8.20

40 heterocyclic analogue SF No.2 3 3.14 3.26 449.54 70.16 49.87 6.86

41 heterocyclic analogue CF No.2 3 2.93 2.98 463.52 87.23 49.82 6.43

42 heterocyclic analogue SF №3 3 2.59 2.81 435.55 53.09 49.82 7.23

43 гетероцикл. аналог CF No.3 3 2.61 2.70 449.54 70.16 49.77 6.79

44 heterocyclic analogue CF No.4 3 2.53 2.65 483.60 87.23 52.76 6.90

45 pyrrole analog CF No.1 3 0.72 1.16 444.48 142.52 46.55 7.64

46 pyrrole analog SF No.2 3 1.59 2.46 370.48 50.6 43.21 8.20

47 pyrrole analog CF No.2 3 1.91 2.12 384.47 67.67 43.55 7.19

48 heterocyclic analogue CF No.5 3 2.26 2.86 415.55 90.98 45.91 7.86

49 ohmefentanyl 3 3.04 3.24 366.49 43.78 43.57 7.15

50 3-thiophene-CF 3 3.01 3.61 400.53 78.09 44.75 7.86

51 vinyl-CF 3 3.19 3.51 392.49 49.85 45.29 7.44

52 lofentanyl 3 3.96 4.29 408.53 49.85 47.26 7.44

53 carfentanyl (CF) 3 3.17 3.49 394.50 49.85 45.39 7.44

Table prepared by the authors using their own data

Table 5. Descriptor mean values by groups

Substance group
Calculated physicochemical descriptors

LogD
7,4

LogP MW TPSA Polar pK
b

Group 1 1.46 2.49 300.7 40.79 34.04 8.35

Group 2 3.16 4.08 355.6 33.88 42.55 8.25

Group 3 2.51 2.83 414.9 69.86 46.58 7.28

All substances 2.38 3.07 365.0 51.43 41.78 7.86

Table prepared by the authors using their own data

Table 6. Correlation coefficients of physicochemical descriptors 

  LogD
7.4

LogP MW TPSA Polar pK
b

LogP — LogD
7.4

LogD
7.4

1.00 0.92 0.36 -0.31 0.58 -0.18 -0.21

LogP 0.92 1.00 0.10 -0.52 0.35 0.20 0.18

MW 0.36 0.10 1.00 0.64 0.96 -0.70 -0.68

TPSA -0.31 -0.52 0.64 1.00 0.43 -0.56 -0.53

Polar 0.58 0.35 0.96 0.43 1.00 -0.60 -0.59

pK
b

-0.18 0.20 -0.70 -0.56 -0.60 1.00 0.97

LogP — LogD
7.4

-0.21 0.18 -0.68 -0.53 -0.59 0.97 1.00

Table prepared by the authors using their own data

Table 4 (continued)
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training samples (classification with learning). Discriminant 

analysis makes it possible to classify an object based on 

the measurement of various characteristics (features, de-

scriptors), i.e., permitting their assignment to one of several 

groups (classes). In this study, discriminant analysis was 

used to determine the differences of aggregates in the 

mean of a variable (or a linear combination of variables) for 

subsequent use of this variable or a linear combination of 

variables as a criterion for the membership of new mem-

bers to a particular group. 

The resulting data set was subjected to a linear discri-

minant analysis (LDA) procedure with step-by-step inclu-

sion of variables. The grouping variable was the “Group” 

category, with all other descriptors being used as inde-

pendent variables. Initially, the data array was divided into 

two parts: one part was used as a training part to derive a 

mathematical classification model, while the second part 

acted as a control part to verify the resulting model. The 

last three compounds in the list of each group were used 

as controls.

In the process of LDA with step-by-step inclusion of 

variables, discriminant functions were determined. At each 

step, we analyzed all the variables to find the one that made 

the greatest contribution to the difference between the ag-

gregates. This variable was included in the model at this 

step, and then the transition to the next step was carried 

out. The step-by-step variable inclusion mode allowed the 

minimum of variables to be involved in the analysis. The 

discriminant functions, expressing the maximum hetero-

geneity of groups among themselves, were linear com-

binations of variables optimized such that to discriminate 

groups among themselves most effectively. Since all discri-

minant functions were orthogonal, they collectively formed 

the phase space of discriminant functions, i.e., an n-dimen-

sional Cartesian coordinate system, where n is the number 

of statistically significant discriminant functions. 

The discriminant functions were uniform for the data set 

involved in LDA; however, the values of the roots of each 

of the discriminant functions were strictly specific for each 

substance. The roots of discriminant functions for each 

substance were calculated by matrix multiplication of a 

vector of descriptors of this substance by a matrix of co-

efficients of discriminant functions. Thus, the original data 

matrix was transformed into a matrix containing values of 

the roots of discriminant functions instead of descriptors. 

The values of the roots, unique to each junction, were es-

sentially the coordinates of the points of the corresponding 

junctions in the phase space of the discriminant functions. 

The average values of these roots for each group deter-

mined the coordinates of the group centers (the so-called 

group centroids). It was the values of the roots of discrimi-

nant functions or the coordinates of objects (substances) 

in the phase space of discriminant functions that made it 

possible to classify objects, i.e., to correlate a specific sub-

stance with any of the groups by the proximity of a point to 

the centroid of the group.

The conducted LDA of the training sample of the data 

matrix with descriptors for three groups of substances 

produced two statistically significant discriminant func-

tions dF1 and dF2. These functions were fully descrip-

tive the data array, of which the dF1 function describes 

88% of the information contained in the data presented 

in Table 7. 

Thus, the obtained discriminant functions are the fol-

lowing linear combinations of descriptor values:

dF1 = 0,051×MW + 2.599×LogP  –  1.943×LogD
7.4

  –  0.643×
Polar – 0.032×TPSA + 6.638

dF2 = 0.028×MW – 1.376×LogP – 0.845×LogD
7.4

 – 0.359×Polar +

7.010

The standardized coefficients for each descriptor for 

the dF1 function, which are relatively close to each other 

in absolute value and far from zero, indicate the important 

contribution of all the considered physicochemical indi-

cators to the discrimination performed by this most sta-

tistically significant discriminant function. In principle, the 

same applies to the dF2 function, with the exception for 

the TPSA (topological area of the polar surface) indicator, 

which proved to be negligible. 

For all model substances from Table  4, including the 

control ones, the values of the roots of the discriminant 

functions dF1 and dF2 were calculated. The root values, 

unique for each junction, are the coordinates of the points 

of the corresponding junctions in the phase space of dis-

criminant functions, which is a flat coordinate system with 

Table 7. Coefficients of discriminant functions for groups of model xenobiotics

Descriptor
Non-standardized Standardized

dF1 dF2 dF1 dF2

MW 0.051 0.028 1.724 0.966

LogP 2.599 -1.376 2.190 -1.159

LogD
7.4

-1.943 0.845 -1.712 0.745

Polar -0.643 -0.359 -2.329 -1.300

TPSA -0.032 0.000 -0.611 -0.005

Constant 6.638 7.010 0 0

Eigenval 4.090 0.562 4.090 0.562

Cum.Prop 0.879 1.000 0.879 1.000

Table prepared by the authors using their own data
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the dF1 and dF2 axes. Figure 1 demonstrates the location 

of points corresponding to specific samples of substances 

from the three groups in the phase space of the dF1 and 

dF2 functions. 

It can be seen from Fig. 1 that all groups are well sepa-

rated from each other; all control points were determined 

in their groups.

For all three groups of model substances, the aver-

age values of the roots of the dF1 and dF2 discriminant 

functions were found, which are the coordinates of the 

centroids of the groups in the phase space of the dF1 

and dF2 functions (Tables 8 and 9). The obtained discri-

minant functions, according to the data of the classifica-

tion matrix (Table 9), possess a high discriminating power, 

allowing a fairly clear division of the groups of substances 

under consideration among themselves. Table 9 shows 

the LDA classification results for both the substances in 

the training sample and for all substances, including the 

control ones.

In general, the substances were classified correctly, with 

the exception for substances No. 1, 2, and 8 from Group 

1, which were clearly assigned to Group 2 already at the 

first LDA steps. This proves the validity of the mathematical 

model developed based on physicochemical properties for 

classifying substances from the class of opioid analgesics 

into groups.

Thus, in order to determine whether new compounds 

not included in the research list belong to one of the three 

groups, it would be necessary to:

• determine the values of all descriptors;

• calculate the values of the roots of the dF1 and dF2 dis-

criminant functions corresponding to the coordinates of 

the point of this connection in the phase space of the 

dF1 and dF2 functions;

• select the smallest distance from a given point to the 

centers of each of the groups (the distance is according 

to the rules of geometry, i.e., the Pythagorean formula), 

which will indicate belonging to this group.

It may happen that, when situated relatively far from all 

the centroids, the determined point will not belong to any 

of the three groups. 

To directly calculate the classification index in order 

to assign the evaluated compounds to one of the three 

groups, the CF1-CF3 classification functions can be used 

to determine which group is most likely to be assigned to 

a xenobiotic. There are as many classification functions as 

there are groups: 

–2
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0
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1 — control 

2 — control 
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Figure prepared by the authors using their own data

Fig. 1. Roots values of the dF1 and dF2 discriminant functions for groups 1, 2, 

and 3 of model chemical xenobiotics, control compounds included

Table 8. Average values of the roots of the dF1 and dF2 discriminant functions for groups of model xenobiotics

Substance group dF1 dF2

Group 1 2.485±1.225 0.675±1.368

Group 2 0.797±0.716 –1.176±0.485

Group 3 0.797±0.716 0.255±0.809

Table prepared by the authors using their own data

Table 9. Classification matrix obtained for the substances of the training sample and for all substances, control substances included

Training sample only

Group % of correct classification Group 1 Group 2 Group 3

1 75 9 3 0

2 100 0 11 0

3 100 0 0 19

Total 92.9 9 14 19

All substances

Group % of correct classification Group 1 Group 2 Group 3

1 80 12 3 0

2 100 0 14 0

3 100 0 0 22

Total 94.1 12 17 22

Table prepared by the authors using their own data
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СF1 = 0.276×MW + 22.406×LogP – 23.622×LogD
7.4

 + 0.906×
Polar – 0.160×TPSA – 66.585

СF2 = 0.137×MW + 20.566×LogP – 21.906× LogD
7.4

 + 2.657×
Polar – 0.105×TPSA – 88.554

СF3 = 0.034×MW + 11.248×LogP – 15.200×LogD
7.4

 + 3.963×
Polar + 0.013×TPSA – 97.835

For each new or known compound, all three functions 

are calculated, and the compound is assigned to the group 

for which the classification function is most important. 

When new CNS-active substances and xenobiotics are 

being identified based on the proposed physicochemical 

criteria, they can be classified into one of three groups: 

substances with a hazard risk, those with a high hazard 

risk, and those with an extremely high hazard risk.

The operability of the created mathematical model 

was assessed using the classification of substances in the 

training sample. The obtained results of the classification of 

substances, which differ from the initial classification into 

groups in the training sample, are shown in Table 10.

According to the results of the conducted classifica-

tion, a potentially greater hazard was predicted for 9 out 

of 53 model substances than initially expected. The effec-

tiveness of the proposed model for assessing the potential 

health hazard of CNS-active substances was demonstrat-

ed by the example of propoxyphene. This drug was initially 

classified as Group 1; however, further analysis clearly al-

located it to Group 2, i.e., substances with a high hazard 

risk. Indeed, since 2009, this drug has been designated as 

hazardous in a number of countries and discontinued due 

to the high risk of fatal overdoses and cardiac arrhythmias.2 

Table 10 also shows that certain drugs and substances de-

tected in illicit trafficking may carry certain risks when used 

uncontrolled, which is consistent with the literature data on 

their toxic effects [22]. 

Diphenoxylate and buprenorphine, classified as Groups 

2 and 3, respectively, can be considered as pharmacologi-

cal exceptions. Diphenoxylate is used for gastrointestinal 

disorders, with its action being directed at opioid receptors 

located in the intestine. Therefore, the excessively high li-

pophilicity of diphenoxylate prevents its action on the CNS 

[23]. Buprenorphine, which belongs to the family of highly 

active Bentley compounds, is a powerful drug that could 

be just as dangerous as its related etorphine. Nevertheless, 

pharmacologically, it exhibits the properties of an opioid re-

ceptor agonist, posing no significant threat to human life. 

The results obtained emphasize that the proposed model 

based on the physicochemical properties of substances 

cannot take into account the peculiarities of their effect on 

CNS targets, such as receptors and enzymes. Hence, false 

positive and false negative results are possible in the result-

ing solutions. At the same time, the correct classification 

of most model compounds into groups according to their 

hazard potential shows the determining effect of the phys-

icochemical properties of narcotic analgesics on their toxic 

action.

CONCLUSION

Using the example of representatives of one class of CNS-

active substances, we confirmed the relationship between 

the potential health hazard of narcotic analgesics and their 

physicochemical properties, which determine the redistri-

bution of such substances from the central bloodstream 

into the CNS tissues. The molecular weight, lipophilicity, 

ability to acid-base dissociation, polarity and polarizability 

of CNS-active substances, as well as their ability to bind to 

target receptors, equally determine the specific features of 

their toxic effects. Therefore, these physicochemical prop-

erties can serve as criteria for determining the health haz-

ard potential of CNS-active xenobiotics. 

The method of linear discriminant analysis with step-

by-step inclusion of variables from a training sample of 

representatives of one class of CNS-active substances 

(opioid analgesics), divided into three groups according 

to their hazard level, was used to derive a mathematical 

model for classifying psychoactive substances based on 

their physicochemical properties. The model included two 

Table 10. Classification of the substances other than the training sample

No. Model object Initial group

Calculation of classification functions 

Defined group

СF1 СF2 СF3

1 fentanyl 1 72.67 75.38 72.13 2

2 buprenorphine 1 117.08 122.51 122.32 2

3 propoxyphene 1 74.24 75.65 69.24 2

4 diphenoxylate 1 97.91 107.42 109.98 3

5 β-hydroxy thiofentanyl 2 64.01 67.06 73.06 3

6 β-hydroxy fentanyl 2 62.37 66.13 70.84 3

7 remifentanil 2 61.15 60.83 68.69 3

8 alfentanil 2 76.10 81.34 93.42 3

9 sufentanil 2 86.61 90.79 91.79 3

Table prepared by the authors using their own data

2 Gandey A. Physicians Say Good Riddance to Worst Drug in History.2011. https://www.medscape.com/viewarticle/736718?src=mp&spon=25&form=fpf 

(Available from: 16 Jun 2024).
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dF1 and dF2 discriminant functions as linear combinations 

of the values of physicochemical descriptors, allowing us 

to satisfactorily divide the considered groups of narcotic 

analgesics among themselves according to the criterion of 

potential threat. The CF1-CF3 classification functions were 

calculated to assign new compounds to a particular group. 

The validity of the proposed mathematical model for as-

sessing the potential hazard of CNS-active xenobiotics was 

confirmed on the example of classifying a training sample 

of substances. As a result, 44 substances out of 53 were 

classified correctly. The classification of seven substances 

was clarified; two substances proved to be pharmacologi-

cal exceptions.

The calculated classification functions can be easily 

embedded as formulas in tabular editors or specialized 

software and databases for automatic classification of 

new and known compounds. Provided that the quantita-

tive expression of the power and speed of action of opioid 

analgesics on the body and other parameters of mole-

cules are determined, it becomes possible to conduct a 

mathematical analysis in order to establish a quantitative 

relationship between the characteristics of their biologi-

cal activity and quantitative structure-activity relationship 

(QSAR). Of significant interest is the applicability of the re-

sults obtained in the study to other classes of CNS-active 

substances.

Undoubtedly, along with perfection of predictive meth-

ods, their results require confirmation by conventional toxi-

cological methods. However, the demonstrated possibility 

of rapid detection of potentially hazardous xenobiotics will 

be useful for the prevention of mass poisoning when such 

CNS-active substances enter illicit traffic.
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