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Introduction. Forensic medical examinations frequently encounter poorly understood, potentially hazardous psychoactive substances. At the same time,
information on the biological activity of such substances may be either fragmentary and contradictory or absent altogether. Therefore, the development of
approaches to predicting the health hazard of xenobiotics is an urgent task of emergency medicine.

Objective. To study the relationship between physicochemical properties and the hazard rate of one class of CNS-active substances using the methods of
mathematical analysis followed by scientific substantiation of criteria for preliminary hazard assessment of narcotic drugs.

Materials and methods. The study models included the known structures of narcotic analgesics, divided into three groups according to their potential
hazard rate. The physicochemical properties of such substances, i.e., molecular weight, polarity, polar surface area, distribution coefficients, and basic disso-
ciation constants were considered as potential hazard factors. Linear discriminant analysis was used to identify the relationship between the physicochemical
properties of psychoactive substances and their hazard potential.

Results. The considered example of one class of CNS-active substances confirms the relationship between their hazard rate and the physicochemical
properties affecting their redistribution from the central bloodstream to the central nervous system. Physicochemical criteria for predicting the hazard rate of
psychoactive substances are proposed. These criteria serve as classification functions that distinguish groups of model substances.

Conclusions. The physicochemical properties of psychoactive substances and the strength of their binding to target receptors equally determine the char-
acteristics of their toxic effect. The formulated classification functions, calculated based on the physicochemical properties of substances, can be used for a
preliminary hazard assessment of xenobiotics during their detection in biological samples.
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PUSNKO-XUMUHECKNE KPUTEPUN OLIEHKN ONMACHOCTU LUHC-AKTUBHbIX KCEHOBMOTUKOB
[.B. Kprsopotos™, A./. Hrukonaes, A.C. Pagunos, B.P. Pem6osckuii, [B.A. KyaHeL 0B

Hay4Ho-nccnenoBaTenbCKmin UHCTUTYT MUreHbl, NpodnaTonornm 1 skonornn Yenoseka defepanbHOro MeANKo-61M0NOrMYECKOro areHTCTaa,

TNeHuHrpaackas obnactb, Poccus

BBepeHue. CynebHO-MeauLIMHCKas 9KCNepTm3a H4acTo CTaNkMBaETCS C Manondy4eHHbIMK, MOTEHLMANBHO ONAaCHBIMU NCUXOaKTUBHBIMY BelllecTBamu. [pu
3TOM MHGOPMAaLMS O BUONOrMYECKON aKTVBHOCTU TaKKMX BELLECTB OTPbIBOYHA U MPOTMBOPEYMBA UM BOOOLLIE OTCYTCTBYET. [1o3ToMy padpaboTka Noax0oL0B
K MPOrHO3MPOBaHWIO OMaCHOCTN KCEHOOUOTVKOB SIBSIETCS akTyaflbHOW 3aaaqent MeANLIMHbBI SKCTPEMasbHbIX CUTYaLmIA.

Llenb. V13y4eHre B3aMMOCBA3M PUINKO-XUMUHECKIX CBOWNCTB W CTEMEHN ONMacHOCTU NpeacTaBuTenen oaHoro 13 knaccos LIHC-akTrBHbIX BELWECTB C 1UC-
nosb30BaHNeM METOAOB MaTeEMaTU4ECKOro aHanmn3a v nocnenytowmM Hay4HbIM 0O0CHOBaHNEM KPUTEPUEB NPEABAPUTENBHOM OLEHKIN OMAacHOCTU HapKo-
TUYECKMX CPEfCTB.

MaTtepuanbl 1 meTofbl. B ka4ecTBe MOAESNbHbIX OOBEKTOB MCCNEA0BaHNsS NCNONb30BaNn N3BECTHbIE CTPYKTYPbl HAPKOTUHECKMX aHabreTVkoB, pas-
[eneHHble Ha TPW rpynnbl Mo CTeneHn NoTeHUManbHOM onacHoCTW. B kadecTBe hakTopoB MOTEHUMANbHOM ONacHOCTU TakMx BELLECTB paccMaTpusaniu
X (PU3MKO-XMMUHECKME CBOMCTBA, Takmne Kak: MOMeKynspHas Macca, NoAspHOCTb, MollaAb NMOASPHOM MOBEPXHOCTW, KOSMMULMEHTbI pacnpeaeneHns
N KOHCTaHTbl OCHOBHOW Anccoumaummn. [1nsa BeiISsBNeHNst CBA3N (PUINKO-XMMNHECKNX CBOMCTB 1 CTEMNEHW ONMacHOCTIN NCUXOaKTUBHBIX BELLIECTB MCMOb30Ba-
VI IMHEVHbBIN OAVCKPUMUHAHTHBIA aHann3.

PesynbTraTbl. Ha npumepe npefcTasuteneit ogHoro 13 knaccos LIHC-akTnBHbIX BELLECTB NokasaHa CBs3b CTEMeHM 1X OMaCHOCTU C (UBNKO-XUMUNHECKMUN
CBOMCTBaMM, BANSIIOLLMY Ha NepepacnpefeneHne Takmx BELWEeCTB U3 LIeHTPalbHOrO KDOBOTOKA B TKaHW LIEHTPanbHOW HEPBHOW cUCTeMb!. [ns nporHo-
3MPOBaHNSI CTEMEHN ONACHOCTM MCUXOAKTUBHbBIX BELLECTB NMPeaioKeHbl (OU3NKO-XUMNHECKNE KPUTEPUM — KacCUMUKALMOHHbIE (OYHKLIMM, AOCTATO4HO
XOPOLLIO pa3aenstoLLme rpynnbl MOAENbHbIX BELLECTB Mexdy COOoM.

BbiBoAbl. [1okazanu, 4To (U3NKO-XMMUHECKME CBONCTBA NCUX0aKTUBHbIX BELLECTB ONPeaenstoT 0COOEHHOCTN X TOKCUHECKOro AENCTBUS B HE MEHbLLEN
CTEMneHu, Yem cuna ux CBA3bIBaHUsS C LeneBbiMU peLienTopamun. ChopmynmpoBaHHble B paboTe KnaccuduKaLMoHHble PyHKLMW, pacCHUThIBaeMble Ha OC-
HOBaHUW (PU3NKO-XMMUHECKIMX CBOMCTB BELLECTB, MOrYT ObITb MCMONB30BaHbl A1 NPeaBapUTENbHON OLEHKM CTEMeHN ONacHOCTY KCEHOBUOTMKOB B XOf4e
X BbIiBNEHNs B B1onorm4eckmnx npobax.

KnioueBble cnoBa: KCeHoBNOTHKM; Bruonornieckmne npobsl; HAPKOTUHECKME CPeACTBa; reMaTosHUedan4eckuini 6apbep; hrUsnko-XMMNYecKne CBONCTBa,;
MOJIEKYNIAPHAS Macca; NOMISPHOCTL; KOHCTaHTbI Anccoumanmnm; KoaphuumeHTbl pacrpeaeneHmns
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INTRODUCTION

The forensic medical examination of poisoning cases with
psychoactive substances is carried out using targeted
analytical methods, such as gas chromatography—-mass
spectrometry (GC-MS) and liquid chromatography-tandem
mass spectrometry (HPLC-MS/MS), to detect known xe-
nobiotics and their metabolites [1]. Untargeted testing using
high-resolution liquid chromatography-mass spectrometry
(HPLC-HRMS) technologies can be used to identify the
chemical structure of new substances appearing in illicit
traffic. Substances identified in biological samples can
pose a significant threat [2-5]. Although the safety of a
particular drug can be measured by determining its thera-
peutic index, calculated as the ratio of the drug maximum
dose that does not exhibit toxicity to the dose that pro-
vides the desired effect (LD, /ED, ), this approach cannot
be used for substances detected during forensic medical
examination. In addition, information about the hazardous
pharmacological activity of xenobiotics may frequently be
either fragmentary and contradictory or absent altogether,
for a number of reasons:

e rapid emergence of new psychoactive chemicals that
are illegally marketed in the absence of reference ma-
terials and methods for their determination in biological
and other environments [6];

e |egislative restrictions on the research of narcotic drugs
with no intended medical use [6];

e insufficient standardization of methods for studying the
pharmacological properties of narcotic drugs (7, 8];

e complexity of the interspecific transfer of preclinical re-
search results, leading to an underestimation of the tox-
icity of narcotic drugs [9];

e impossibility of comparing the biological effects of
drugs that are not standardized in terms of purity and
isomeric composition [3].

The above reasons hamper the medicobiological as-
sessment of new psychoactive substances, although there
has been a growth in the number of cases of illicit traffick-
ing both in Russia and globally [4, 8—10]. In order to be able
to predict the potential hazard of CNS-active xenobiotics
and other chemical substances, criteria for a straightfor-
ward determination of their toxic effect are required.

It is common knowledge that the toxicity of many nar-
cotic analgesics is associated with opioid-induced respira-
tory depression, which result in the patient’s death in the
absence of proper treatment [11]. The central generator
of breathing patterns in the brainstem is the preBastzinger
Complex and the Kolliker—Fuse nucleus. In these areas of
the brain, only 70140 neurons are involved in responding
to an increase in carbon dioxide (pCO,) levels and a de-
crease in blood oxygenation (pO,), which is necessary for

the reflex mechanism of respiration [12]. Accordingly, the
mechanism of regulation of respiratory activity is extremely
vulnerable to substances capable of selectively affecting
these targets in the brain. It can be assumed that the health
hazard of CNS-active xenobiotics, expressed in terms of
strength and speed, is mediated, on the one hand, by fac-
tors determining the degree of their effect on target recep-
tors in the neurons of these brain regions, and, on the other,
by factors determining the transfer of xenobiotics from the
central bloodstream to their biological targets in the brain.

The strength of narcotic analgesics is often associ-
ated with the inhibition constants of opioid receptors [13].
However, under standardized conditions, morphine and
fentanyl, which differ significantly in the strength of their an-
algesic effects, possess comparable inhibition constants
(K) of the p-opioid receptors (MOR) (Table 1) [5, 7].

Upon closer examination, no direct relationship exists
between the analgesic activity of opioids and the strength
of their binding to the receptor, which was earlier confirmed
by numerous examples [14]. Thus, according to Bostrom
et al., oxycodone, which binds to opioid receptors more
than 20 times less strongly than morphine (Table 1), ex-
hibits a 1.8-fold greater analgesic activity. This effect can
be explained by its higher concentration in the target brain
tissues than in the blood. Morphine, on the contrary, has an
achievable concentration in the brain of rats several times
lower than in the blood [15]. Thus, the binding of small mol-
ecules to opioid receptors in most cases is the determining
condition for manifestation of analgesic activity, although
being not the main factor in the strength and speed of its
manifestation (similar to the classical works of N.V. Lazarev
on the manifestation of narcotic properties in hydrocarbons
(non-electrolytes)) [16]. The hazardous effects of opioid an-
algesics are also related to their properties, which deter-
mine the characteristics of entry into target tissues, organs,
and targets in the central nervous system (CNS) through
the blood-brain barrier (BBB).

The BBB acts as a filter through which nutrients flow
from the bloodstream to the brain and in the opposite di-
rection, while the waste products of the nervous tissue are
removed. The BBB protects the brain from microorgan-
isms, toxins, cellular and humoral factors of the immune
system, and xenobiotics circulating in the blood. Drugs act-
ing on CNS targets must have the ability to penetrate such
a biological barrier. Currently, three main ways of transport-
ing small molecules to brain tissues are being considered,
including unidirectional penetration into the brain through
passive and facilitated diffusion, due to a concentration
gradient of substances and requiring no additional energy;
active transport, requiring energy (ATP) for the transport
of molecules against a concentration gradient; passive
diffusion for moderately lipophilic medications and active
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Table 1. Inhibition constants of p-opioid receptors by some narcotic analgesics

Low-affinity ligands, Morphine-like ligands, High-affinity ligands,
K>100 nM K=1-100 nM K<1nM
medication K, (nM) MOR medication K, (nM) MOR medication K, (nM) MOR

tramadol 1248.6 hydrocodone 41.58 butorphanol 0.76
codeine 734.2 oxycodone 25.87 levorphanol 0.41
meperidine 45041 diphenoxylate 12.37 oxymorphone 0.40
propoxyphene 120.2 alfentanil 7.39 hydromorphone 0.36
pentazocine 117.8 methadone 3.37 buprenorphine 0.21
nalbuphine 21 sufentanil 0.13

fentanyl 1.34

morphine 1.16

Table prepared by the authors using data from [7]

transport mechanisms for penetration through the BBB of
predominantly polar molecules [17, 18].

The membranes separating the cells of the BBB lay-
ers act as a channel for the diffusion of organic molecules
through the BBB cellular layers. In order to pass through
such a channel, a molecule dissolved in the blood must be
transformed during a multi-stage physicochemical process
of desolvation and charge loss for a non-covalent interac-
tion with the phospholipid bilayer. This process is similar to
that of ligand-receptor interaction, although with lower ster-
ic requirements. Therefore, for penetration into the brain,
small molecules must exhibit a set of specific properties,
such as optimal geometric size, ionization properties, flex-
ibility, etc. Thus, lipophilicity is a parameter that correlates
well with the analgesic power of anesthetics and analge-
sics. This parameter, expressed in the form of LogP [16], is
now considered as a composite descriptor describing the
contribution of steric intermolecular interactions and that of
formed hydrogen bonds [17]. Descriptors of hydrogen bond
formation are properties of molecules, such as polarizabil-
ity, polar surface area, the number of donors and acceptors
of hydrogen bonds, or heteroatoms capable of their forma-
tion. Polar compounds with a high potential for hydrogen
bonding, e.g., peptides, cannot easily penetrate the BBB.
Polarizability, underlying a number of physical properties
of substances, including surface tension and solubility, is
characterized by a dipole moment. The polar surface area
is defined as the sum of the surfaces of all polar atoms or
molecules, primarily oxygen and nitrogen. Medications act-
ing on the CNS possess smaller polar surface areas (PSA)
than other classes of drugs, usually no more than 90 A2
Molecules with a polar surface area of more than 140 A2 do
not readily penetrate cell membranes.

Geometric and steric factors expressed by the mo-
lecular weight, molecular volume, and flexibility of the
molecule, are important for diffusion through biological
membranes. For effective penetration through the BBB,
the molecular weight should not exceed 400 Da. The
molecular volume as a function of the molecular weight
and structure takes all the conformations available to the
molecule into account. The presence of more than ten
rotating connections in structures correlates with a de-
crease in their bioavailability and CNS activity. The limited
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flexibility and compactness of molecules with fewer polar
groups on their surface capable of functioning as donors
and acceptors of hydrogen bonds is an advantage for
substances acting on the CNS; therefore, the parameters
describing these properties are significant factors related
to the CNS activity of xenobiotics.

Most CNS-active substances have a nitrogen atom ca-
pable of ionization in the blood plasma. The resulting charge
of the protonated molecule negatively affects its ability to
diffuse through the dielectric layers of phospholipid mem-
branes, compared to neutral molecules [18]. However. the
presence of a positive charge on the nitrogen atom is con-
sidered an important factor for the electrostatic interaction
of substances with the key amino acids of target receptors
[19]. The molecule ionization degree in the buffer system
of the blood and cerebrospinal fluid is a dualistic factor re-
lated both to the rate of entry of active molecules into CNS
tissues and influencing their ability to bind to CNS targets
[20, 21]. Thus, the severity of the toxic effect of CNS-active
substances, due to the effectiveness of their entry into the
brain, is determined by the sum of physicochemical factors
related to their chemical structure. These factors can be
experimentally evaluated or calculated.

This work is aimed at studying the relationship between
the physicochemical properties of one class of CNS-active
substances and their health hazard potential using math-
ematical analysis. On this basis, criteria for preliminary haz-
ard assessment of narcotic drugs are substantiated.

MATERIALS AND METHODS

Table 2 presents a sample of model objects used in the
study selected from the known structures of narcotic anal-
gesics. The objects under consideration were divided into
three groups:

1. Group 1 includes narcotic analgesics ever used in
medicine [14], taking into account possible side effects dur-
ing their medical use. These substances are considered as
those potentially capable of manifesting health hazard.

2. Group 2 includes narcotic substances not intended
for medical use, but purposefully created for illegal human
use, taking into account information about cases of mass
poisoning with such substances [22]. These substances
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are considered as those potentially capable of manifesting
high health hazard.

3. Group 3 included highly active drugs, the use of
which in medicine requires precautions for their controlled
dosing, as well as veterinary and research drugs not in-
tended for human consumption [3, 14]. These substances
are considered as those potentially capable of manifesting
extremely high health hazard.

The physicochemical properties that can be meas-
ured without laborious experiments and reference materi-
als of controlled substances were considered as potential
descriptors of the hazard rate of CNS-active xenobiotics
(see Table 3). The molecular weight of substances was de-
termined by GC-MS; the distribution constants “octanol/
water” and acid-base dissociation correlated with retention
times were established by HPLC [21, 23]. In cases where
information about the structural formula of a xenobiotic
can be found in mass spectrometry databases, computer
simulation methods using accessible and reliable calcula-
tion algorithms are used to determine its physicochemical
properties [24].

The values of the selected physicochemical parameters
for the training sample of substances were calculated using
the ACD/Percepta software [24]. The methods of descrip-
tive statistics and the method of linear discriminant analy-
sis using the Statistica 6.0 statistical analysis application
were used for mathematical data analysis. We previously
showed the effectiveness of multidimensional statistics (ch-
emometry) methods, in particular linear discriminant analy-
sis and multiple regression for calculating toxic properties

Table 2. Characteristics of the training sample of model substances

of refrigerants based on the physicochemical parameters
of molecules [25], for assessing the degree of exposure to
xenobiotics and noninvasive diagnosis of a number of dis-
eases based on the spectral characteristics of biological
samples' [26].

DISCUSSION

The generated sample contained 53 anonymized records
of the calculated values of the physicochemical proper-
ties of the model CNS-active substances described in the
literature (Table 2). The structures of the analyzed model
preparations were used for calculating the selected phys-
icochemical quantities, the results of which are shown in
Table 4.

Table 5 presents the average values of the physico-
chemical descriptors used to construct regression models
and to determine the limits of their applicability.

The average values of the physicochemical quanti-
ties presented in Table 5 show that the narcotic sub-
stances in Group 2 demonstrate the highest lipophilicity
(LogP). At the same time, the ratio of the average lipo-
philicity values of the drug groups in water and blood
plasma — LogP and LogD. , — shows that the lipophilic-
ity of Groups 1 and 2 significantly decreases at physi-
ological pH. Conversely, the highly active substances
belonging to Group 3 and having a lower value of the
basic ionization constant demonstrate high lipophilicity
not only in water, but also in blood plasma. This empha-
sizes the relationship between lipophilicity and the ability

Group Model objects Information source Structures number Assessment of model objects
1 Medical narcotic analgesics [7] 17 substances with a hazard risk
2 Non-medical narcotic analgesics [22] 18 substances with a high hazard risk
3 Highly active narcotic analgesics [3, 14] 18 substances with an extremely high hazard risk
Total number of training sample structures 53
Table prepared by the authors using data from [3, 7, 14, and 22]
Table 3. Selected physicochemical descriptors of the hazard level of CNS-active xenobiotics
Paljamet_er Parameter Description Dimension Determination possibility
designation
The partition coefficient of the substance in the octanol-water system re-
LogP / LoaD flects the lipophilicity of the substances; the ability to dissolve in fats, lipids, _ HPLC is experimental, by calculation
9 9574 | and other media at pH 7.0 (LogP) or at physiological pH (LogD, ) during the methods
distribution of substances in the body.
K The basic dissociation constant determines the lipophilicity of ionized _ HPLC is experimental, by calculation
P, molecules. methods
MW The molecular weight of the substance reflects the steric factors affecting Da HPLC-MS is experimental, by
the distribution of substances in the body. calculation methods
The topological polar surface area is a calculated parameter, associated A2 )
TPSA with the ability of substances to cross biological membranes (10-15cm2) by calculation methods
Polarizability — the physical property of substances to acquire an electric
Polar or magnetic dipole moment in an external electromagnetic field and associ- A3 by calculation methods
ated with the ability of substances to form hydrogen bonds and overcome (10-2*cm?) y
biological membranes

Table prepared by the authors

" Rembovsky VR, Radilov AS, Dulov SA, Nikolaev Al. Assessment of the degree of exposure to xenobiotics based on the spectral characteristics of water-protein
complexes of blood plasma. Methodological recommendations 12.11. Moscow: FMBA; 2012 (In Russ.).
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of substances to enter CNS tissues during redistribution
in the blood-brain system.

The physicochemical criteria that can be used for haz-
ard assessment of CNS-active substances were estab-
lished based on paired correlation coefficients between
the physicochemical descriptors shown in Table 6. It can
be seen that most descriptors are weakly correlated with
one another. The strongest correlation is observed be-
tween the LogD,, and LogP values since these are highly

Table 4. Calculation of physicochemical descriptors
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similar parameters in nature. The difference between them
is related to the pH values at which they are determined,
being due to the degree of ionization of the molecules of
substances at these pH values. This is indicated by a rather
strong correlation (R = 0.97) between the calculated value
(LogD, , — LogP) and the pKb value.

A strong correlation is also observed between the val-
ues of MW and Polar. This is likely to be due to a propor-
tional increase in the integral polarizability of the molecule,

. Group Calculated physicochemical descriptors

No. Model object
number LogD,, LogP MW TPSA Polar pK,
1 fentanyl 1 3.32 4.08 336.47 23.55 41.09 8.08
2 buprenorphine 1 3.48 4.45 467.64 62.16 52.07 8.26
3 methadone 1 3.12 4.44 309.44 20.31 38.02 8.70
4 levorphanol 1 1.94 3.21 257.37 23.47 30.49 8.61
5 hydrocodone 1 0.57 1.31 299.36 38.77 32.32 8.06
6 pentazocine 1 3.05 3.79 285.42 23.47 34.96 8.04
7 butorphanol 1 1.96 3.52 327.46 43.7 37.64 8.85
8 propoxyphene 1 3.97 4.85 339.47 29.54 40.58 8.23
9 meperidine 1 1.22 2.44 247.33 29.54 28.25 8.60
10 nalbuphine 1 0.98 2.03 357.44 73.16 38.11 8.35
1 tramadol 1 0.71 2.54 263.37 32.7 30.90 9.24
12 hydromorphone 1 0.53 1.29 285.33 49.77 30.41 8.03
13 codeine 1 0.34 1.21 299.36 41.93 32.84 8.21
14 morphine 1 -0.18 0.69 285.33 52.93 30.93 8.16
15 oxycodone 1 0.16 0.91 315.36 59.00 32.95 8.06
16 diphenoxylate 1 5.42 5.72 452.58 53.33 52.93 7.40
17 oxymorphone 1 0.25 1.00 301.33 70.00 31.03 8.03
18 4-fluorophenyl 2 3.11 3.87 354.46 23.55 41.09 8.07
19 furanyl-fentanyl 2 3.35 4.12 374.47 36.69 44.25 8.08
20 3-methylthiophentanyl 2 2.96 4.09 356.52 51.79 42.32 8.50
21 B-hydroxy-thiophentany! 2 2.38 2.77 358.49 72.02 41.06 7.58
22 p-hydroxy-fentanyl 2 2.87 3.07 352.47 43.78 41.70 715
23 a-methyl-thiophentanyl 2 3.15 4.04 356.52 51.79 42.25 8.23
24 a-methyl-fentanyl 2 2.75 4.09 350.49 23.55 42.89 8.73
25 acetyl-a-methylfentanyl 2 2.56 3.91 336.47 23.55 41.05 8.73
26 3-methylbutyril fentanyl 2 4.21 4.98 364.52 23.55 44.79 8.08
27 remifentanil 2 1.77 1.85 376.44 76.15 40.06 6.70
28 4-methoxy-butyrylfentanyl 2 3.55 4.33 380.52 32.78 45.58 8.10
29 thiofentanyl 2 2.66 3.79 342.49 51.79 40.45 8.50
30 4-fluoro-butyrylfentanyl 2 3.69 4.44 368.48 23.55 42.93 8.07
31 3-methylfentanyl 2 3.36 413 350.49 23.55 42.96 8.08
32 acrylic fentanyl 2 2.99 3.75 334.45 23.55 40.98 8.08
33 acetylfentanyl 2 2.98 3.74 322.44 23.55 39.25 8.08
34 alfentanil 2 1.99 2.04 416.51 81.05 46.25 6.53
35 sufentanil (SF) 2 2.91 3.77 386.55 61.02 44.80 8.20
36 pyrrole analog SF No.1 3 2.33 2.55 383.48 54.78 4416 719
37 etorfin 3 2.30 3.09 411.53 62.16 45.51 8.07
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Table 4 (continued)

. Group Calculated physicochemical descriptors
No. Model object
number LogD,, LogP MW TPSA Polar pK,
38 heterocyclic analogue CF No.1 3 3.05 3.10 506.59 90.47 54.93 6.43
39 heterocyclic analogue SF No.1 3 1.80 2.67 462.58 65.45 53.43 8.20
40 heterocyclic analogue SF No.2 3 3.14 3.26 449.54 70.16 49.87 6.86
41 heterocyclic analogue CF No.2 3 2.93 2.98 463.52 87.23 49.82 6.43
42 heterocyclic analogue SF N3 3 2.59 2.81 435.55 53.09 49.82 7.23
43 reTepouunkn. aHanor CF No.3 3 2.61 2.70 449.54 70.16 49.77 6.79
44 heterocyclic analogue CF No.4 3 2.53 2.65 4883.60 87.23 52.76 6.90
45 pyrrole analog CF No.1 3 0.72 1.16 444.48 142.52 46.55 7.64
46 pyrrole analog SF No.2 3 1.59 2.46 370.48 50.6 43.21 8.20
47 pyrrole analog CF No.2 3 1.91 212 384.47 67.67 43.55 719
48 heterocyclic analogue CF No.5 3 2.26 2.86 415.55 90.98 45.91 7.86
49 ohmefentanyl 3 3.04 3.24 366.49 43.78 43.57 715
50 3-thiophene-CF 3 3.01 3.61 400.53 78.09 44.75 7.86
51 vinyl-CF 3 3.19 3.51 392.49 49.85 45.29 7.44
52 lofentanyl 3 3.96 4.29 408.53 49.85 47.26 7.44
53 carfentanyl (CF) 3 317 3.49 394.50 49.85 45.39 7.44
Table prepared by the authors using their own data
Table 5. Descriptor mean values by groups
Calculated physicochemical descriptors
Substance group
LogD,, LogP MW TPSA Polar pK,
Group 1 1.46 2.49 300.7 40.79 34.04 8.35
Group 2 3.16 4.08 355.6 33.88 42.55 8.25
Group 3 2.51 2.83 414.9 69.86 46.58 7.28
All substances 2.38 3.07 365.0 51.43 41.78 7.86
Table prepared by the authors using their own data
Table 6. Correlation coefficients of physicochemical descriptors
LogD,, LogP Mw TPSA Polar pK, LogP—LogD,,
LogD,, 1.00 0.92 0.36 -0.31 0.58 -0.18 -0.21
LogP 0.92 1.00 0.10 -0.52 0.35 0.20 0.18
MW 0.36 0.10 1.00 0.64 0.96 -0.70 -0.68
TPSA -0.31 -0.52 0.64 1.00 0.43 -0.56 -0.53
Polar 0.58 0.35 0.96 0.43 1.00 -0.60 -0.59
pK, -0.18 0.20 -0.70 -0.56 -0.60 1.00 0.97
LogP — LogD,, -0.21 0.18 -0.68 -0.53 -0.59 0.97 1.00

Table prepared by the authors using their own data

associated with an increase in the number of polarizable
fragments with increasing mass. An analysis of the obtained
correlations between the physicochemical properties in the
training groups of CNS-active substances showed that the
values considered, either by themselves or in pairs, do not
allow for an unambiguous distribution of substances to one
of the three groups of hazardous substances.

A discriminant analysis was used to analyze the entire
data set of physicochemical properties of model substanc-
es in order to identify their relationship with the degree of
their health hazard. Discriminant analysis, as a branch of
multidimensional statistical analysis, includes statistical
methods for classifying multidimensional observations
in a situation where the researcher has a priori so-called
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training samples (classification with learning). Discriminant
analysis makes it possible to classify an object based on
the measurement of various characteristics (features, de-
scriptors), i.e., permitting their assignment to one of several
groups (classes). In this study, discriminant analysis was
used to determine the differences of aggregates in the
mean of a variable (or a linear combination of variables) for
subsequent use of this variable or a linear combination of
variables as a criterion for the membership of new mem-
bers to a particular group.

The resulting data set was subjected to a linear discri-
minant analysis (LDA) procedure with step-by-step inclu-
sion of variables. The grouping variable was the “Group”
category, with all other descriptors being used as inde-
pendent variables. Initially, the data array was divided into
two parts: one part was used as a training part to derive a
mathematical classification model, while the second part
acted as a control part to verify the resulting model. The
last three compounds in the list of each group were used
as controls.

In the process of LDA with step-by-step inclusion of
variables, discriminant functions were determined. At each
step, we analyzed all the variables to find the one that made
the greatest contribution to the difference between the ag-
gregates. This variable was included in the model at this
step, and then the transition to the next step was carried
out. The step-by-step variable inclusion mode allowed the
minimum of variables to be involved in the analysis. The
discriminant functions, expressing the maximum hetero-
geneity of groups among themselves, were linear com-
binations of variables optimized such that to discriminate
groups among themselves most effectively. Since all discri-
minant functions were orthogonal, they collectively formed
the phase space of discriminant functions, i.e., an n-dimen-
sional Cartesian coordinate system, where n is the number
of statistically significant discriminant functions.

The discriminant functions were uniform for the data set
involved in LDA; however, the values of the roots of each
of the discriminant functions were strictly specific for each
substance. The roots of discriminant functions for each
substance were calculated by matrix multiplication of a
vector of descriptors of this substance by a matrix of co-
efficients of discriminant functions. Thus, the original data

Table 7. Coefficients of discriminant functions for groups of model xenobiotics
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matrix was transformed into a matrix containing values of
the roots of discriminant functions instead of descriptors.
The values of the roots, unique to each junction, were es-
sentially the coordinates of the points of the corresponding
junctions in the phase space of the discriminant functions.
The average values of these roots for each group deter-
mined the coordinates of the group centers (the so-called
group centroids). It was the values of the roots of discrimi-
nant functions or the coordinates of objects (substances)
in the phase space of discriminant functions that made it
possible to classify objects, i.e., to correlate a specific sub-
stance with any of the groups by the proximity of a point to
the centroid of the group.

The conducted LDA of the training sample of the data
matrix with descriptors for three groups of substances
produced two statistically significant discriminant func-
tions dF1 and dF2. These functions were fully descrip-
tive the data array, of which the dF1 function describes
88% of the information contained in the data presented
in Table 7.

Thus, the obtained discriminant functions are the fol-
lowing linear combinations of descriptor values:

dF1 = 0,051xMW + 2.599xLogP — 1.943xLogD,, — 0.643x
Polar — 0.032-TPSA + 6.638
dF2=0.028xMW~1.376xLogP~-0.845xLogD. ,~0.359~Polar +
7.010

The standardized coefficients for each descriptor for
the dF1 function, which are relatively close to each other
in absolute value and far from zero, indicate the important
contribution of all the considered physicochemical indi-
cators to the discrimination performed by this most sta-
tistically significant discriminant function. In principle, the
same applies to the dF2 function, with the exception for
the TPSA (topological area of the polar surface) indicator,
which proved to be negligible.

For all model substances from Table 4, including the
control ones, the values of the roots of the discriminant
functions dfF1 and dF2 were calculated. The root values,
unique for each junction, are the coordinates of the points
of the corresponding junctions in the phase space of dis-
criminant functions, which is a flat coordinate system with

Non-standardized Standardized
Descriptor
dF1 dF1 dF2

MW 0.051 0.028 1.724 0.966
LogP 2.599 -1.376 2190 -1.159
LogD,, -1.943 0.845 -1.712 0.745
Polar -0.643 -0.359 -2.329 -1.300
TPSA -0.032 0.000 -0.611 -0.005
Constant 6.638 7.010 0 0

Eigenval 4.090 0.562 4.090 0.562
Cum.Prop 0.879 1.000 0.879 1.000

Table prepared by the authors using their own data
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Figure prepared by the authors using their own data

Fig. 1. Roots values of the dF1 and dF2 discriminant functions for groups 1, 2,
and 3 of model chemical xenobiotics, control compounds included

the dF1 and dF2 axes. Figure 1 demonstrates the location
of points corresponding to specific samples of substances
from the three groups in the phase space of the dF1 and
dF2 functions.

It can be seen from Fig. 1 that all groups are well sepa-
rated from each other; all control points were determined
in their groups.

For all three groups of model substances, the aver-
age values of the roots of the dF1 and dF2 discriminant
functions were found, which are the coordinates of the
centroids of the groups in the phase space of the dFi
and dF2 functions (Tables 8 and 9). The obtained discri-
minant functions, according to the data of the classifica-
tion matrix (Table 9), possess a high discriminating power,

allowing a fairly clear division of the groups of substances

under consideration among themselves. Table 9 shows

the LDA classification results for both the substances in
the training sample and for all substances, including the
control ones.

In general, the substances were classified correctly, with
the exception for substances No. 1, 2, and 8 from Group
1, which were clearly assigned to Group 2 already at the
first LDA steps. This proves the validity of the mathematical
model developed based on physicochemical properties for
classifying substances from the class of opioid analgesics
into groups.

Thus, in order to determine whether new compounds
not included in the research list belong to one of the three
groups, it would be necessary to:

e determine the values of all descriptors;

e calculate the values of the roots of the dF1 and dF2 dis-
criminant functions corresponding to the coordinates of
the point of this connection in the phase space of the
dF1 and dF?2 functions;

e select the smallest distance from a given point to the
centers of each of the groups (the distance is according
to the rules of geometry, i.e., the Pythagorean formula),
which will indicate belonging to this group.

It may happen that, when situated relatively far from all
the centroids, the determined point will not belong to any
of the three groups.

To directly calculate the classification index in order
to assign the evaluated compounds to one of the three
groups, the CF1-CF3 classification functions can be used
to determine which group is most likely to be assigned to
a xenobiotic. There are as many classification functions as
there are groups:

Table 8. Average values of the roots of the dF1 and dF2 discriminant functions for groups of model xenobiotics

Substance group dF2
Group 1 2.485+1.225 0.675+1.368
Group 2 0.797+0.716 -1.176+0.485
Group 3 0.797+0.716 0.255+0.809

Table prepared by the authors using their own data

Table 9. Classification matrix obtained for the substances of the training sample and for all substances, control substances included

Group % of correct classification Group 1 Group 2 Group 3
1 75 9 3 0
Training sample only 2 100 0 11 0
3 100 0 0 19
Total 92.9 9 14 19
Group % of correct classification Group 1 Group 2 Group 3
1 80 12 3 0
All substances 2 100 0 14 0
3 100 0 0 22
Total 941 12 17 22

Table prepared by the authors using their own data
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CF1 = 0.276xMW + 22.406xLogP - 23.622xLogD, , + 0.906x
Polar — 0.160xTPSA - 66.585
CF2 = 0.137xMW + 20.566xLogP - 21.906x LogD, , + 2.657x
Polar — 0.105xTPSA — 88.554
CF3 = 0.034xMW + 11.248xLogP — 16.200xLogD, , + 3.963x
Polar + 0.013xTPSA — 97.835

For each new or known compound, all three functions
are calculated, and the compound is assigned to the group
for which the classification function is most important.

When new CNS-active substances and xenobiotics are
being identified based on the proposed physicochemical
criteria, they can be classified into one of three groups:
substances with a hazard risk, those with a high hazard
risk, and those with an extremely high hazard risk.

The operability of the created mathematical model
was assessed using the classification of substances in the
training sample. The obtained results of the classification of
substances, which differ from the initial classification into
groups in the training sample, are shown in Table 10.

According to the results of the conducted classifica-
tion, a potentially greater hazard was predicted for 9 out
of 53 model substances than initially expected. The effec-
tiveness of the proposed model for assessing the potential
health hazard of CNS-active substances was demonstrat-
ed by the example of propoxyphene. This drug was initially
classified as Group 1; however, further analysis clearly al-
located it to Group 2, i.e., substances with a high hazard
risk. Indeed, since 2009, this drug has been designated as
hazardous in a number of countries and discontinued due
to the high risk of fatal overdoses and cardiac arrhythmias.?
Table 10 also shows that certain drugs and substances de-
tected in illicit trafficking may carry certain risks when used
uncontrolled, which is consistent with the literature data on
their toxic effects [22].

Diphenoxylate and buprenorphine, classified as Groups
2 and 3, respectively, can be considered as pharmacologi-
cal exceptions. Diphenoxylate is used for gastrointestinal
disorders, with its action being directed at opioid receptors

Table 10. Classification of the substances other than the training sample
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located in the intestine. Therefore, the excessively high li-
pophilicity of diphenoxylate prevents its action on the CNS
[28]. Buprenorphine, which belongs to the family of highly
active Bentley compounds, is a powerful drug that could
be just as dangerous as its related etorphine. Nevertheless,
pharmacologically, it exhibits the properties of an opioid re-
ceptor agonist, posing no significant threat to human life.
The results obtained emphasize that the proposed model
based on the physicochemical properties of substances
cannot take into account the peculiarities of their effect on
CNS targets, such as receptors and enzymes. Hence, false
positive and false negative results are possible in the result-
ing solutions. At the same time, the correct classification
of most model compounds into groups according to their
hazard potential shows the determining effect of the phys-
icochemical properties of narcotic analgesics on their toxic
action.

CONCLUSION

Using the example of representatives of one class of CNS-
active substances, we confirmed the relationship between
the potential health hazard of narcotic analgesics and their
physicochemical properties, which determine the redistri-
bution of such substances from the central bloodstream
into the CNS tissues. The molecular weight, lipophilicity,
ability to acid-base dissociation, polarity and polarizability
of CNS-active substances, as well as their ability to bind to
target receptors, equally determine the specific features of
their toxic effects. Therefore, these physicochemical prop-
erties can serve as criteria for determining the health haz-
ard potential of CNS-active xenobiotics.

The method of linear discriminant analysis with step-
by-step inclusion of variables from a training sample of
representatives of one class of CNS-active substances
(opioid analgesics), divided into three groups according
to their hazard level, was used to derive a mathematical
model for classifying psychoactive substances based on
their physicochemical properties. The model included two

Calculation of classification functions
No. Model object Initial group Defined group
CF1 CF2 CF3
1 fentanyl 1 72.67 75.38 7213 2
2 buprenorphine 1 117.08 122.51 122.32 2
3 propoxyphene 1 74.24 75.65 69.24 2
4 diphenoxylate 1 97.91 107.42 109.98 3
5 B-hydroxy thiofentanyl 2 64.01 67.06 73.06 3
6 B-hydroxy fentanyl 2 62.37 66.13 70.84 3
7 remifentanil 2 61.15 60.83 68.69 3
8 alfentanil 2 76.10 81.34 93.42 3
9 sufentanil 2 86.61 90.79 91.79 3

Table prepared by the authors using their own data

2 Gandey A. Physicians Say Good Riddance to Worst Drug in History.2011. https://www.medscape.com/viewarticle/736718?src=mp&spon=25&form=fpf
(Available from: 16 Jun 2024).
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dF1 and dF2 discriminant functions as linear combinations
of the values of physicochemical descriptors, allowing us
to satisfactorily divide the considered groups of narcotic
analgesics among themselves according to the criterion of
potential threat. The CF1-CF3 classification functions were
calculated to assign new compounds to a particular group.

The validity of the proposed mathematical model for as-
sessing the potential hazard of CNS-active xenobiotics was
confirmed on the example of classifying a training sample
of substances. As a result, 44 substances out of 53 were
classified correctly. The classification of seven substances
was clarified; two substances proved to be pharmacologi-
cal exceptions.

The calculated classification functions can be easily
embedded as formulas in tabular editors or specialized
software and databases for automatic classification of
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