Preview

Extreme Medicine

Advanced search

Evaluation of efficacy of the amino acid-peptide complex administered intragastrically to golden hamsters experimentally infected with SARS-CoV-2

https://doi.org/10.47183/mes.2021.011

Abstract

The development of coronavirus infection outbreak into a pandemic, coupled with the lack of effective COVID-19 therapies, is a challenge for the entire pharmaceutical industry. This study aimed to assess the treatment and preventive efficacy of the amino acid-peptide complex (APC) in male Syrian hamsters infected with SARS-CoV-2 (intranasal administration of 26 μl of the virus culture, titer of 4 × 104 TCD50/ml). In a modeled COVID-19 case, APC administered for treatment and preventive purposes reduced lung damage. Compared to the positive control group, test group had the lung weight factor 15.2% smaller (trend), which indicates a less pronounced edema. Microscopic examination revealed no alveolar edema, atypical hypertrophied forms of type II alveolocytes, pulmonary parenchyma fibrinization. The macrophage reaction intensified, which is probably a result of the APC-induced activation of regenerative processes in the lung tissues. Spleens of the animals that received APC for therapeutic and preventive purposes were less engorged and had fewer hemorrhages. The decrease of body weight of the test animals that received APC for treatment and prevention was insignificant (p < 0.05), which indicates a less severe course of COVID-19. Administered following a purely therapeutic protocol, APC proved ineffective against SARS-CoV-2 post-infection. Thus, APC-based drug used as a therapeutic and preventive agent reduces pulmonary edema and makes morphological signs of lung tissue damage less pronounced in male Syrian hamsters infected with SARS-CoV-2.

About the Authors

D. S. Laptev
Научно-исследовательский институт гигиены, профпатологии и экологии человека Федерального медико-биологического агентства
Russian Federation

Denis S. Laptev

Kapitolovo, str. 93, r.p. Kuzmolovsky, Vsevolozhsky r., 188663



G. A. Protasova
Research Institute of Hygiene, Occupational Pathology and Human Ecology under FMBA
Russian Federation

Leningrad region



S. G. Petunov
Research Institute of Hygiene, Occupational Pathology and Human Ecology under FMBA
Russian Federation

Leningrad region



A. S. Radilov
Research Institute of Hygiene, Occupational Pathology and Human Ecology under FMBA
Russian Federation

Leningrad region



S. V. Chepur
State Research and Testing Military Medicine Institute under the Ministry of Defense of the Russian Federation
Russian Federation

St. Petersburg



A. S. Gogolevskiy
State Research and Testing Military Medicine Institute under the Ministry of Defense of the Russian Federation
Russian Federation

St. Petersburg



V. A. Myasnikov
State Research and Testing Military Medicine Institute under the Ministry of Defense of the Russian Federation
Russian Federation

St. Petersburg



M. A. Tyunin
State Research and Testing Military Medicine Institute under the Ministry of Defense of the Russian Federation
Russian Federation

St. Petersburg



A. V. Smirnova
State Research and Testing Military Medicine Institute under the Ministry of Defense of the Russian Federation
Russian Federation

St. Petersburg



References

1. Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579: 270–73.

2. Kogan E.A., Berezovskij Yu.S., Procenko D.D., Bagdasarjan T.R., Grecov E.M., Demura S.A., i dr. Patologicheskaja anatomija infekcii, vyzvannoj SARS-COV-2. Cudebnaja medicina. 2020; 2: 8–30. Russian.

3. Heinz F.X., Stiasny K. Profiles of current COVID-19 vaccines. Wien Klin Wochenschr. 2021; 1–13. DOI: 10.1007/s00508-021-01835-w.

4. DeFrancesco L. COVID-19 antibodies on trial. Nat Biotechnol. 2020; 38: 1242–52. DOI: 10.1038/s41587-021-00813-x.

5. Brouwer J.M., Caniels T.G., Straten K., Snitselaar J.L., Aldon Y., Bangaru S., et al. Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science. 2020; 369: 643–50.

6. Tortorici A., Beltramello M., Lempp F.A., Pinto D., Dang H.V., Rosen L.E. Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms. Science. 2020; 370: 950–7. DOI: 10.1126/science.abe3354.

7. Karkischenko VN, Pomytkin IA, Skvortsova VI. The Opioidergic System of Immune Cells: A New Pharmacological Target in the Therapy of “Cytokine Storm”. Journal Biomed. 2020; 16 (4): 14–23. Russian.

8. Sia S.F., Yan L.M., Chin A.H., Fung K., Choy K.T., Wong A.L., et al. Pathogenesis and transmission of SARSCoV-2 in golden hamsters. Nature. 2020; 583 (7818): 834–8. DOI: 10.1038/s41586-020-2342-5.

9. Imaia M., Iwatsuki-Horimotoa K., Hattab M., Loeberc S., Halfmannb P.J. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. PNAS. 2020; 117 (28): 16587–95. DOI: 10.1073/pnas.2009799117.

10. Chan J.F., Zhang A.J., Yuan S., Poon V.K., Chan C.C., Lee A.C., et al. Simulation of the clinical and pathological manifestations of Coronavirus Disease 2019 (COVID-19) in golden Syrian hamster model: implications for disease pathogenesis and transmissibility. Clin Infect Dis. 2020; 71 (9): 2428–46. DOI: 10.1093/cid/ciaa325.

11. Laptev D.S., Petunov S.G., Nechaykina O.V., Bobkov D.V., Radilov A.S. Using experimental ex vivo models to develop COVID-19 pathogenetic therapy and complications prevention agents. Extreme Medicine. 2020; (4): 6–12. DOI: 10.47183/mes.2020.020. Russian.

12. Reed L.J., Muench H. A simple method of estimating fifty percent endpoints. Am J Hygiene. 1938; 27: 493–7.

13. Rybakova A.V., Makarova M.N. Sanitarnyj kontrol' jeksperimental'nyh klinik (vivariev) v sootvetstvii s lokal'nymi i mezhdunarodnymi trebovanijami. Mezhdunarodnyj vestnik veterinarii. 2015; 4: 81– 89. Russian.

14. Nambulli S., Xiang Y., Tilston-Lunel N.L., Rennick L.J., Sang Z., Klimstra W.B., et al. Inhalable Nanobody (PiN-21) prevents and treats SARS-CoV-2 infections in Syrian hamsters at ultra-low doses. Sci Adv. 2021; 7 (22): eabh0319. DOI: 10.1126/sciadv.abh0319.

15. Barnes K., Ingram J.C., Porras O.H., Barros L.F., Hudson E.R., Fryer L.G., et al. Activation of GLUT1 by metabolic and osmotic stress: potential involve ment of AMP activated protein kinase. J Cell Sci. 2002; 115: 2433–42.

16. Zabozlaev F.G., Kravchenko Ye.V., Galljamova A.R., Letunovskij N.N. Patologicheskaja anatomija legkih pri novoj koronavirusnoj infekcii (SOVID-19). Predvaritel'nyj analiz autopsijnyh issledovanij. Klinicheskaja praktika. 2020; 11 (2): 60–76. Russian.

17. Baum B.A., Ajithdoss D., Copin R., Zhou A., Lanza K., Negron N., et al. REGN-CоV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters. Science. 2020; 370: 1110–5.

18. Hartman A.L., Nambulli S., McMillen C.M., White A.G., Tilston-Lunel N.L., Albe J.R., et al. SARS-CoV-2 infection of African green monkeys results in mild respiratory disease discernible by PET/ CT imaging and shedding of infectious virus from both respiratory and gastrointestinal tracts. PLoS Pathog. 2020; 16 (9): e1008903. DOI: 10.1371/journal.ppat.1008903.


Review

For citations:


Laptev D.S., Protasova G.A., Petunov S.G., Radilov A.S., Chepur S.V., Gogolevskiy A.S., Myasnikov V.A., Tyunin M.A., Smirnova A.V. Evaluation of efficacy of the amino acid-peptide complex administered intragastrically to golden hamsters experimentally infected with SARS-CoV-2. Extreme Medicine. 2021;23(2):20-26. https://doi.org/10.47183/mes.2021.011

Views: 22


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2713-2757 (Print)
ISSN 2713-2765 (Online)