Preview

Extreme Medicine

Advanced search

Prospects of application of tear fluid analysis in aerospace medicine

https://doi.org/10.47183/mes.2025-301

Abstract

Introduction. The improvement of methods for remote health monitoring of astronauts, as well as the search for new noninvasive biomarkers of metabolic adaptation to microgravity conditions, are priority directions in the field of aerospace medicine.

Objective. To assess the possibility of using individual indicators of tear fluid in aerospace medicine.

Discussion. A number of prospects for the application of human tear biomarkers to determine disorders occurring under the influence of spaceflight factors or during their imitation were identified. The use of filter paper is a priority method for collecting lachrymal fluid in spaceflight conditions due to its relative noninvasiveness and simplicity of sample preparation for assay. It was found that the unstimulated tear fluid contains proteins with an antibacterial activity: lysozyme, lipocalin, and secretory immunoglobulin A. The concentration of lysozyme in the tear fluid shows a marked increase relative to pre- and post-flight values. Changes in the concentration of natriuretic peptide, angiotensin II, dopamine, and α2-macroglobulin under conditions of real and simulated microgravity are described. A high diagnostic potential of determining the level of D-dimer in tear fluid under the influence of extreme factors of space flight was established.

Conclusions. The conducted literature review emphasizes the significant theoretical potential for the quantitative determination of natriuretic peptide, D-dimer, and individual components of the dopamine and renin-angiotensin-aldosterone systems in tear fluid for noninvasive diagnostics of pathological processes associated with spaceflight factors.

About the Authors

M. O. Senchilov
Federal Medical Biological Agency; Institute for Biomedical Problems of the Russian Academy of Sciences
Russian Federation

Mikhail O. Senchilov

Moscow



O. M. Manko
Institute for Biomedical Problems of the Russian Academy of Sciences
Russian Federation

Olga M. Manko

Moscow



G. U. Vasillieva
Institute for Biomedical Problems of the Russian Academy of Sciences
Russian Federation

Galina U. Vasillieva

Moscow



References

1. Gazenko OG, Grigoriev AI, Natochin UV. Water-salt homeostasis and space flight. Moscow: AN SSSR Publ.; 1986 (In Russ.).

2. Noskov VB. Adaptation of water-electrolyte metabolism to the conditions of space flight and during its simulation. Human physiology. 2013;39(5):119 (In Russ.). https://doi.org/10.7868/s0131164613050111

3. Poljakov VV, Noskov VB. Metabolic investigations in the 438-day space flight. Aerospace and environmental medicine. 2005;39(3):9–13 (In Russ.). EDN: NYYCEO

4. Ponzini E, Santambrogio C, De Palma A, Mauri P, Tavazzi S, Grandori R. Mass spectrometry-based tear proteomics for noninvasive biomarker discovery. Mass Spectrometry Reviews. 2022;41(5):842–60. https://doi.org/10.1002/mas.21691

5. Jones G, Altman J, Ahmed S, Lee T, Zhi W, Sharma S, Sharma A. Unraveling the Intraday Variations in the Tear Fluid Proteome. Investigative Ophthalmology & Visual Science. 2024;65(3):2. https://doi.org/10.1167/iovs.65.3.2

6. Chesnokova NB, Pavlenko TA, Beznos OV, Nodel MR. Lacrimal fluid as a source of biomarkers of neurodegenerative processes in the central nervous system. Russian neurological journal. 2023; 28(5):5–13 (In Russ.). https://doi.org/10.30629/2658-7947-2023-28-5-5-13

7. Somov EE, Brzheskij VV. Tear (physiology, research methods, clinic). Saint-Peterburg: Nauka Publ.. 1994. 156 p. (In Russ.).

8. Pieczynski J, Szulc U, Harazna J, Szulc A, Kiewisz J. Tear fluid collection methods: Review of current techniques. European Journal of Ophthalmology. 2021;31(5):2245–51. https://doi.org/10.1177/1120672121998922

9. Van Haeringen N. Clinical biochemistry of tears. Survey of ophthalmology.1981;26(2):84–96. https://doi.org/10.1016/0039-6257(81)90145-4

10. Qin W, Zhao C, Zhang L, Wang T, Gao Y. A Dry Method for Preserving Tear Protein Samples. Biopreserv Biobank. 2017;15(5):417–21. https://doi.org/10.1016/j.jconrel.2021.06.042

11. Barmada A, Shippy A. Quantifying Sample Collection and Processing Impacts on Fiber-Based Tear Fluid Chemical Analysis. Translational Vision Science & Technology.2020;9(10):23. https://doi.org/10.1167/tvst.9.10.23

12. Suh A, Ong J, Waisberg E, Lee A. Neurostimulation as a technology countermeasure for dry eye syndrome in astronauts. Life Sciences in Space Research. 2024;42:37–9. https://doi.org/10.1016/j.lssr.2024.04.003

13. Lepine M, Zambito O, Sleno L. Targeted Workflow Investigating Variations in the Tear Proteome by Liquid Chromatography Tandem Mass Spectrometry. ACS omega. 2023;8(34):31168–77. https://doi.org/10.1021/acsomega.3c03186

14. Shannon A, Adelman S, Hisey E, Potnis S, Rozo V, Yung M, Li J, Murphy C, Thomasy S, Leonard B. Antimicrobial Peptide Expression at the Ocular Surface and Their Therapeutic Use in the Treatment of Microbial Keratitis. Frontiers in Microbiology. 2022;13:857735. https://doi.org/10.3389/fmicb.2022.857735

15. Agha N, Baker F, Kunz H, Spielmann G, Mylabathula P, Rooney B, et al. Salivary antimicrobial proteins and stress biomarkers are elevated during a 6-month mission to the International Space Station. Journal of Applied Physiology. 2020;128(2):264–75. https://doi.org/10.1152/japplphysiol.00560.2019

16. Kozlov IA, Harlamova IE. Natriuretic peptides: biochemistry, physiology, clinical significance. General reanimatology. 2009;5(1):89–97 (In Russ.). EDN: KVNFCN

17. Korostyshevskaja IM, Maksimov VF. Where and when natriuretic peptides are secreted in the heart. Ontogenesis. 2012;43(3):217 (In Russ.). EDN: OXXYNR

18. Maack T. The broad homeostatic role of natriuretic peptides. Arquivos Brasileiros de Endocrinologia & Metabologia. 2006;50:198–207. https://doi.org/10.1590/s0004-27302006000200006

19. Levin E, Samad M, Malempati S, Restini C. Natriuretic Peptides as Biomarkers: Narrative Review and Considerations in Cardiovascular and Respiratory Dysfunctions. The Yale Journal of Biology and Medicine. 2023;96(1):137–49. https://doi.org/10.59249/NCST6937

20. Vesely D. Natriuretic peptides and acute renal failure. American Journal of Physiology-Renal Physiology. 2003;285(2):167–77. https://doi.org/10.1152/ajprenal.00259.2002

21. Fortney S. Development of lower body negative pressure as a countermeasure for orthostatic intolerance.The Journal of Clinical Pharmacology. 1991;31(10):888–92. https://doi.org/10.1002/j.1552-4604.1991.tb03644.x

22. Kvetnansky R, Noskov V, Blazicek P, Macho L, Grigoriev A, Goldstein D, Kopin I. New approaches to evaluate sympathoadrenal system activity in experiments on Earth and in space. Acta Astronautica. 1994;34:243–54. https://doi.org/10.1016/0094-5765(94)90261-5

23. Sosnin DU, Gavrilova TV, Larin AE, Nenasheva OU, Krivcov AV, Chereshneva MV. The concentration of the cerebral natriuretic peptide in the tear and blood serum.Clinical laboratory diagnostics. 2017;62(12);719–24 (In Russ.). https://doi.org/10.18821/0869-2084-2017-62-12-719-724

24. Omran F, Kyrou I, Osman F, Lim V, Randeva H, Chatha K. Cardiovascular Biomarkers: Lessons of the Past and Prospects for the Future. International Journal of Molecular Sciences. 2022;23(10):5680. https://doi.org/10.3390/ijms23105680

25. Grigoriev AI, Larina IM. Water-salt metabolism and kidney function in humans with prolonged hypokinesia. Nephrology. 2001;5(3):7–18 (In Russ.). https://doi.org/10.24884/1561-6274-2001-5-3-7-18

26. Li X, Fu Y, Tong X, Zhang Y, Shan Y, Xu Y, et al. RAAS in diabetic retinopathy: mechanisms and therapies. Archives of Endocrinology and Metabolism. 2024;68:e230292. https://doi.org/10.20945/2359-4292-2023-0292

27. Pastushkova LH, Dobrohotov IV, Veselova OM, Tijs IS, Kononihin AS, Novoselova AM, et al. Identification of proteins of the cardiovascular system in healthy individuals in «dry» immersion by studying the proteomic profile of urine. Human physiology. 2014;40(3):109 (In Russ.). https://doi.org/10.7868/S0131164614030126

28. Pakharukova NA, Pastushkova LKh, Larina IM, Grigoriev AI. Changes of human serum proteome profile during 7-day “dry” immersion. Acta Astronautica. 2011;68(9–10):1523–28. https://doi.org/10.1016/j.actaastro.2009.10.014

29. Larina IM, Popova IA, Mihajlov VM, Buravkova LB. Hormonal mechanisms for ensuring muscle function during prolonged antiorthostatic hypokinesia. Human physiology. 1999;25(3):117–24 (In Russ.).

30. Choudhary R, Kapoor M, Singh A, Bodakhe S. Therapeutic targets of renin-angiotensin system in ocular disorders. Journal of current ophthalmology. 2017;29(1):7–16. https://doi.org/10.1016/j.joco.2016.09.009

31. Neroev VV, Chesnokova NB, Ohocimskaja TD, Pavlenko TA, Beznos O V, Fadeeva VA, et al. Determination of angiotensin II in lacrimal fluid and blood serum in patients with diabetic retinopathy. Tauride medical biological bulletin. 2019;22(3):32–6 (In Russ.). EDN: UGELFP

32. Reschke M, Clement G. Vestibular and sensorimotor dysfunction during space flight. Current Pathobiology Reports. 2018;6:177–83. https://doi.org/10.1007/s40139-018-0173-y

33. Seidler R, Mao X, Tays G, Wang T, Eulenburg P. Effects of space-flight on the brain. The Lancet Neurology. 2024; 23(8):826–35. https://doi.org/10.1016/S1474-4422(24)00224-2

34. Cybko AS, Ilchibaeva TV, Popova NK. The effect of space flight on gene expression in the brains of experimental animals. Vavilov Journal of Genetics and Breeding. 2016;20(2):172–9 (In Russ.). https://doi.org/10.18699/VJ16.134

35. Ji W, Kang H, Song S, Jun W, Han K, Kim T, et al. The Dopaminergic Neuronal System Regulates the Inflammatory Status of Mouse Lacrimal Glands in Dry Eye Disease. Investigative Ophthalmology & Visual Science. 2021;62(4):14. https://doi.org/10.1167/iovs.62.4.14

36. Sharma N, Acharya S, Nair A, Matalia J, Shetty R, Ghosh A. Dopamine levels in human tear fluid. Indian Journal of Ophthalmology. 2019;67(1):38–41. https://doi.org/10.4103/ijo.IJO_568_18

37. Larina O, Bekker A. Study of individual patterns of blood protein control during simulation of microgravity effects on humans. Human Physiology. 2012;38(7):753–6. https://doi.org/10.1134/S0362119712070110

38. Mantovani A, Garlanda C. Humoral Innate Immunity and Acute-Phase Proteins. New England Journal of Medicine. 2023;388(5):439–52. https://doi.org/10.1056/NEJMra2206346

39. Larina ON, Bekker AM. The effect of dry immersion conditions on the content of acute phase globulin proteins in human blood. Bulletin of rehabilitation medicine. 2008;6:29–31 (In Russ.). EDN: MUOEGN

40. Larina ON, Bekker AM, Tjurmin-Kuzmin AU. The acute phase response in experiments with modeling the effects of weightlessness. Integrative physiology. 2023;4(2):187 (In Russ.). https://doi.org/10.33910/2687-1270-2023-4-2-187-197

41. Zhang Y, Wei X, Browning S, Scuderi G, Hanna L, Wei L. Targeted designed variants of alpha-2-macroglobulin (A2M) attenuate cartilage degeneration in a rat model of osteoarthritis induced by anterior cruciate ligament transection. Arthritis Research and Therapy. 2017;19:1–11. https://doi.org/10.1186/s13075-017-1363-4

42. Sathe S, Sakata M, Beaton A, Sack R. Identification, origins and the diurnal role of the principal serine protease inhibitors in human tear fluid. Current eye research. 1998;17(4):348–62. https://doi.org/10.1080/02713689808951215

43. Bogdanov V, Kim A, Nodel M, Pavlenko T, Pavlova E, Blokhin V, et al. A Pilot Study of Changes in the Level of Catecholamines and the Activity of α-2-Macroglobulin in the Tear Fluid of Patients with Parkinsons Disease and Parkinsonian Mice. International Journal of Molecular Sciences. 2021;22(9):4736. https://doi.org/10.3390/ijms22094736

44. Ivanov AP, Goncharov IB, Repenkova LG. Changes in rheological parameters of blood and hemodynamics under conditions of 14-day antiorthostatic hypokinesia. Space biology and aerospace medicine. 1990;24(4):30 (In Russ.).

45. Atkov OU, Bednenko AS. Hypokinesia, weightlessness: clinical and physiological aspects. Moscow: Nauka Publ., 1989. 304 p. (In Russ.).

46. Marshall-Goebel K, Laurie S, Alferova I, Arbeille P, Aunon-Chancellor S, Ebert D, et al. Assessment of Jugular Venous Blood Flow Stasis and Thrombosis During Spaceflight. JAMA Network Open. 2019;2:e1915011. https://doi.org/10.1001/jamanetworkopen.2019.15011

47. Tayal D, Jain P, Goswami B. D-dimer – a multifaceted molecule. Hormone Molecular Biology and Clinical Investigation. 2024;45(2):75–84. https://doi.org/10.1515/hmbci-2022-0093

48. Najdich VI. The main results of scientific research in the field of radiobiology in 2018. Radiation biology. Radioecology. 2019;59(4):431–46 (In Russ.). https://doi.org/10.1134/S086980311904009X

49. Kuzichkin DS, Markin AA, Zhuravleva OA, Krivicina ZA, Vostrikova LV, Zabolotskaja IV, et al. The effect of the total duration and number of completed space flights on the human plasma hemostasis system. Human physiology. 2019;45(6):133–6 (In Russ.). https://doi.org/10.1134/S0131164619050072

50. Muha AL, Markova OA. On the clinical significance of determining some hemostatic parameters in the lacrimal fluid of patients with retinal vascular diseases. Bulletin of Ophthalmology. 1994;1:19–20 (In Russ.).

51. Moshetova LK, Kosyrev AB, Cihonchuk TV, Jarovaja GA, Turkina KI, Neshkova EA. Assessment of regional fibrinolytic activity of lacrimal fluid by determining the level of D-dimer in patients with retinal vein occlusion. Ophthalmological reports. 2016;9(4):18–29 (In Russ.). https://doi.org/10.17816/OV9418-29

52. Ong J, Tarver W, Brunstetter T, Mader T, Gibson C, Mason S, Lee A. Spaceflight associated neuro-ocular syndrome: proposed pathogenesis, terrestrial analogues, and emerging countermeasures. British Journal of Ophthalmology. 2023;107(7):895–900. https://doi.org/10.1136/bjo-2022-322892

53. Willcox M, Argueso P, Georgiev G, Holopainen J, Laurie G, Millar T, et al. TFOS DEWS II Tear Film Report. The ocular surface. 2017;15(3):366–403. https://doi.org/10.1016/j.jtos.2017.03.006

54. Botelho S, Goldstein A, Rosenlund M. Tear sodium, potassium, chloride, and calcium at various flow rates: children with cystic fibrosis and unaffected siblings with and without corneal staining. The Journal of Pediatrics. 1973;83(4):601–6. https://doi.org/10.1016/s0022-3476(73)80221-5

55. Stern M, Gao J, Siemasko K, Beuerman R, Pflugfelder S. The role of the lacrimal functional unit in the pathophysiology of dry eye. Experimental eye research. 2004;78(3):409–6. https://doi.org/10.1016/j.exer.2003.09.003

56. Eyal S. How do the pharmacokinetics of drugs change in astronauts in space. Expert opinion on drug metabolism & toxicology. 2020;16(5):353–6. https://doi.org/10.1080/17425255.2020.1746763

57. Seoane-Viano I, Ong J, Basit A, Goyanes A. To infinity and beyond: Strategies for fabricating medicines in outer space. International Journal of Pharmaceutics. 2022;4:100121. https://doi.org/10.1016/j.ijpx.2022.100121

58. Ponzini E. Tear biomarkers. Advances in Clinical Chemistry. 2024;120:69–115. https://doi.org/10.1016/bs.acc.2024.03.002

59. Loescher M, Seiz C, Hurst J, Schnichels S. Topical drug delivery to the posterior segment of the eye. Pharmaceutics. 2022;14(1):134. https://doi.org/10.3390/pharmaceutics14010134


Supplementary files

Review

For citations:


Senchilov M.O., Manko O.M., Vasillieva G.U. Prospects of application of tear fluid analysis in aerospace medicine. Extreme Medicine. https://doi.org/10.47183/mes.2025-301

Views: 54


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2713-2757 (Print)
ISSN 2713-2765 (Online)