Preview

Extreme Medicine

Advanced search

Specifics of reaction of human cardiovascular system to immersion in cold water

https://doi.org/10.47183/mes.2023.053

Abstract

Winter swimming implies extreme cold stress, which can cause respiratory disorders, arrhythmias, and elevated blood pressure even in generally healthy people. Pre-training examinations for athletes practicing winter swimming should include additional criteria evaluating reaction of the cardiovascular system (CVS) to cold water. This study aimed to determine the risk of pathological abnormalities in the examined individuals exhibiting different CVS reactions to immersion in cold water. We assessed reactivity of CVS with the help of a cold-hypoxic test (CHT), following a previously developed algorithm. The subjects of the analysis were CVS reactions to CHT and physical data collected after swimming in cold water. The study involved 255 female and 205 male participants, all of them almost healthy, aged 18–25 years. They participated in testing in a laboratory setting. Poly-Spektr-8/E cardiograph was used to record ECGs, and GraphPad Prism 8 package for Windows 10 for statistical analysis. Findings: in highly reactive and reactive participants, CHT causes lengthening of the PQ interval, with its value in the initial state (IS) equal to 158 ± 7.2, and with CHT — 178 ± 9.1 (< 0.01); in subjects of he paradoxical type, CHT, against the background of higher pulse, triggered increase of QTc, which in the IS was 405 ± 7.1, with CHT — 420 ± 7.5 (< 0.05). As for blood pressure, on average, CHT made it grow, SBD by 17.4 ± 4.3 mmHg, DBP by 12.9 ± 3.1 mmHg (< 0.05). Swimmers adapted to cold, when swimming in cold water, had QTc above normal in 50% of cases: e.g., if IS of QTc was 434 ± 24 s, after swimming it increased to 492 ± 25 s. After a 200 m swim at = 1.5–2 °C, the average blood pressure in the group, compared to IS, increased, with SBD growing by 16.9 ± 3.1 mmHg, and DBP — by 12.3 ± 2.3 mmHg (< 0.05). Having analyzed the data, we conclude that CHT can be the basis of additional criteria extending examinations for athletes seeking admittance to cold water swimming.

About the Authors

T. I. Baranova
Saint Petersburg State University
Russian Federation

Saint Petersburg



T. V. Rybyakova
Lesgaft National State University of Physical Education, Sport and Health
Russian Federation

Petersburg



M. O. Dmitrieva
Saint Petersburg State University
Russian Federation

Saint Petersburg 



D. A. Anisimov
Saint Petersburg State University
Russian Federation

Saint Petersburg



M. S. Tarasova
Federal Research and Clinical Center for Sports Medicine and Rehabilitation of Federal Medical Biological Agency
Russian Federation

Moscow



M. G. Ogannisyan
Federal Research and Clinical Center for Sports Medicine and Rehabilitation of Federal Medical Biological Agency
Russian Federation

Moscow



References

1. Huttunen P, Rintamäki H. Effect of regular winter swimming on the activity of the sympathoadrenal system before and after a single cold water immersion. Int J Circumpolar Health. 2001; 60 (3): 400–6. PMID: 11590880.

2. Vybíral S, Lesná I, Jansky L, Zeman V. Thermoregulation in winter swimmers and physiological significance of human catecholamine thermogenesis. Exp Physiol. 2000; 85 (3): 321– 6. PMID: 10825419.

3. Blondin DP, Tingelstad HC, Mantha OL, Gosselin C, Haman F. Maintaining thermogenesis in cold exposed humans: relying on multiple metabolic pathways. Compr Physiol. 2014; 4 (4): 1383– 402. DOI: 10.1002/cphy.c130043. PMID: 25428848.

4. Søberg S, Löfgren J, Philipsen FE, Jensen M, Hansen AE, Ahrens E, et al. Altered brown fat thermoregulation and enhanced cold-induced thermogenesis in young, healthy, winter-swimming men. Cell Rep Med. 2021; 2 (10): 100408. DOI: 10.1016/j.xcrm.2021.100408. PMID: 34755128. PMCID: PMC8561167.

5. Londin DP, Frisch F, Phoenix S, Guérin B, Turcotte ÉE, Haman F, et al. Inhibition of Intracellular Triglyceride Lipolysis Suppresses Cold-Induced Brown Adipose Tissue Metabolism and Increases Shivering in Humans. Cell Metab. 2017; 25 (2): 438–47. DOI: 10.1016/j.cmet.2016.12.005. Epub 2017 Jan 12. PMID: 28089568.

6. Lundell RV, Räisänen-Sokolowski AK, Wuorimaa TK, Ojanen T, Parkkola KI. Diving in the Arctic: Cold Water Immersion's Effects on Heart Rate Variability in Navy Divers. Front Physiol. 2020; 10: 1600. DOI: 10.3389/fphys.2019.01600. PMID: 32082177. PMCID: PMC7005786.

7. Shattock MJ, Tipton MJ. ‘Autonomic conflict’: A different way to die during cold water immersion? J Physiol. 2012; 590: 32193230. DOI: 10.1113/jphysiol.2012.229864.

8. Tipton MJ, Kelleher PC, Golden FS. Supraventricular arrhythmias following breath-hold submersions in cold water. Undersea Hyperb. Med J Undersea Hyperb Med. Soc. 1994; 21: 305–13.

9. Datta A, Tipton M. Respiratory responses to cold water immersion: neural pathways, interactions, and clinical consequences awake and asleep. J Appl Physiol (1985). 2006; 100 (6): 2057–64. DOI: 10.1152/japplphysiol.01201.2005. PMID: 16714416.

10. Knechtle B, Waśkiewicz Z, Sousa CV, Hill L, Nikolaidis PT. Cold water swimming-benefits and risks: a narrative review. Int J Environ Res Public Health. 2020; 17 (23): 8984. DOI: 10.3390/ ijerph17238984. PMID: 33276648. PMCID: PMC7730683.

11. Lundell RV, Ojanen T. A systematic review of HRV during diving in very cold water. Int J Circumpolar Health. 2023; 82 (1): 2203369. DOI: 10.1080/22423982.2023.2203369. PMID: 37079282. PMCID: PMC10120448.

12. Baranova TI, Berlov DN, Glotov AS, Glotov OS, Zavarina LB, Kachanova TA, et al. Some genetic determinants of vascular responses in simulated human diving. Journal of evolutionary biochemistry and physiology. 2019; 55 (3): 231–4. DOI: 10.1134/S0022093019030086.

13. Baranova TI, Podyacheva EYu, Zemlyanukhina TA, Berlov DN, Danilova MM, Glotov OS, et al. Vascular reactions of the diving reflex in men and women carrying different ADRA1A Genotypes. Int J Mol Sci. 2022; 23 (16): 9433. DOI: 10.3390/ijms23169433. PMID: 36012699. PMCID: PMC9409260.

14. Baranova TI, Berlov DN, Glotov OS, Korf EA, Minigalin AD, Mitrofanova AV, et al. Genetic determination of the vascular reactions in humans in response to the diving reflex. Am J Physiol Heart Circ Physiol. 2017; 312: 622–31. DOI: 10.1152/ajpheart.00080.2016.

15. Haman F, Souza SCS, Castellani JW, Dupuis MP, Friedl KE, Sullivan- Kwantes W, et al. Human vulnerability and variability in the cold: Establishing individual risks for cold weather injuries. Temperature (Austin).2022;9(2):158–95.DOI:10.1080/23328940.2022.2044740. PMID: 36106152. PMCID: PMC9467591.

16. Baranova TI, Nozdrachev AD, Janvareva IN. Formalizacija kriteriev ocenki nyrjatel'noj reakcii i adaptacii k holodo-gipoksi-giperkapnicheskomu vozdejstviju u cheloveka. Biological Communications. 2005; 2: 107–14. Russian.

17. Gooden BA. Why some people do not drown. Hypothermia versus the diving response. Med J Aust. 1992; 157 (9): 629–32. DOI: 10.5694/j.1326-5377.1992.tb137408.x. PMID: 1406426.

18. Malinowski KS, Wierzba TH, Neary JP, Winklewski PJ, Wszędybył- Winklewska M. Resting heart rate affects heart response to cold- water face immersion associated with apnea. Biology (Basel). 2023; 12 (6): 869. DOI: 10.3390/biology12060869. PMID: 37372152. PMCID: PMC10295257.

19. Nordine M, Schwarz A, Bruckstein R, Gunga HC, Opatz O. The human dive reflex during consecutive apnoeas in dry and immersive environments: magnitude and synchronicity. Front Physiol. 2022; 12: 725361. DOI: 10.3389/fphys.2021.725361. PMID: 35058791. PMCID: PMC8764278.

20. Batra AS, Silka MJ. Mechanism of sudden cardiac arrest while swimming in a child with the prolonged QT syndrome. J Pediatr. 2002; 141 (2): 283–4. DOI: 10.1067/mpd.2002.126924. PMID: 12183730.

21. Choi G, Kopplin LJ, Tester DJ, Will ML, Haglund CM, Ackerman MJ. Spectrum and frequency of cardiac channel defects in swimming-triggered arrhythmia syndromes. Circulation. 2004 Oct 12; 110 (15): 2119–24. DOI: 10.1161/01.CIR.0000144471.98080.CA. Epub 2004. PMID: 15466642.

22. McKnight JC, Mulder E, Ruesch A, Kainerstorfer JM, Wu J, Hakimi N, et al. When the human brain goes diving: using near-infrared spectroscopy to measure cerebral and systemic cardiovascular responses to deep, breath-hold diving in elite freedivers. Philos Trans R Soc Lond B Biol Sci. 2021; 376 (1831): 20200349. DOI:10.1098/rstb.2020.0349. Epub 2021 Jun 28. PMID: 34176327. PMCID: PMC8237162.

23. Bain AR, Drvis I, Dujic Z, MacLeod DB, Ainslie PN. Physiology of static breath holding in elite apneists. Exp Physiol. 2018; 103 (5): 635–51. DOI: 10.1113/EP086269. PMID: 29512224.

24. Godek D, Freeman AM. Physiology, Diving Reflex. StatPearls [Internet]. 2022. Available from: https://www.statpearls.com/ point-of-care/20629. PMID: 30855833.

25. Malinowski KS, Wierzba TH, Neary JP, Winklewski PJ, Wszędybył- Winklewska M. Resting heart rate affects heart response to cold- water face immersion associated with apnea. Biology (Basel). 2023; 12 (6): 869. DOI: 10.3390/biology12060869. PMID: 37372152. PMCID: PMC10295257.


Review

For citations:


Baranova T.I., Rybyakova T.V., Dmitrieva M.O., Anisimov D.A., Tarasova M.S., Ogannisyan M.G. Specifics of reaction of human cardiovascular system to immersion in cold water. Extreme Medicine. 2023;25(4):106-115. https://doi.org/10.47183/mes.2023.053

Views: 35


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2713-2757 (Print)
ISSN 2713-2765 (Online)