Транскрипционные факторы в скелетной мышце человека, ассоциированные с однократным и регулярными силовыми упражнениями
https://doi.org/10.47183/mes.2023.031
Аннотация
Пластичность скелетной мышцы — способность менять морфофункциональные свойства в ответ на изменение сократительной активности. Силовые тренировки ведут к увеличению размеров мышечных волокон и максимальной силы с активацией синтеза белков. Регуляция этих изменений на генном уровне мало изучена. Целью работы было выявить транскрипционные факторы, ассоциированные с изменением транскриптома скелетной мышцы человека при однократном и регулярных силовых упражнениях. Изменение транскриптомного профиля оценивали в m. vastus lateralis 10 молодых мужчин (возраст 23 (20,8–25,9) года) до и после 12-недельной силовой тренировки мышц-разгибателей ног, а также до, через 8 и 24 ч после однократного упражнения. Транскриптомные профили оценивали методом РНК секвенирования, поиска мотивов связывания и ассоциированных транскрипционных факторов. Использовали биоинформатические методы статистики, программы FastQC, GraphPad Prizm 8, DAVID, R. Длительная силовая тренировка привела к обогащению функциональных групп генов «секретируемые белки», «внеклеточный матрикс» и «базальная мембрана» (p < 0,05). Транскриптомные ответы и ассоциированные транскрипционные факторы различались через 8 и 24 ч после однократной нагрузки, а также после регулярных тренировок. Транскрипционные факторы, участвующие в адаптации к длительной и однократной нагрузке, участвуют в миогенезе, ангиогенезе, регуляции фенотипа волокон, протеостазе и иных процессах. Таким образом, регуляция экспрессии генов при адаптации к силовым нагрузкам — сложный процесс с участием множества транскрипционных факторов с разными функциями. Изучение роли этих факторов в адаптации скелетной мышцы к упражнениям является перспективной задачей.
Ключевые слова
Об авторах
Е. М. ЛедневРоссия
Егор Михайлович Леднев
Хорошевское шоссе, д. 76А, г. Москва, 123007
П. А. Махновский
Россия
Москва
Т. Ф. Вепхвадзе
Россия
Москва
Р. И. Султанов
Россия
Москва
А. В. Желанкин
Россия
Москва
А. В. Каныгина
Россия
Москва
Д. В. Попов
Россия
Москва
Э. В. Генерозов
Россия
Москва
Список литературы
1. Виноградова О. Л., Попов Д. В., Нетреба А. И., Цвиркун Д. В., Курочкина Н. С., Бачинин А. В.и др. Оптимизация процесса физической тренировки: разработка новых “щадящих” подходов к тренировке силовых возможностей. Физиология человека. 2013; 39: 71–85. Доступно по ссылке: https://doi.org/10.7868/S0131164613050172.
2. Solsona R, Pavlin L, Bernardi H, Sanchez AMJ. Molecular regulation of skeletal muscle growth and organelle biosynthesis: Practical recommendations for exercise training. Int J Mol Sci. 2021; 22: 1–31. Available from: https://doi.org/10.3390/ijms22052741.
3. Mesquita PHC, Vann CG, Phillips SM, McKendry J, Young KC, Kavazis AN, et al. Skeletal muscle ribosome and mitochondrial biogenesis in response to different exercise training modalities. Front Physiol. 2021; 12. Available from: https://doi.org/10.3389/fphys.2021.725866.
4. Gordon PM, Liu D, Sartor MA, IglayReger HB, Pistilli EE, Gutmann L, et al. Resistance exercise training influences skeletal muscle immune activation: a microarray analysis. J Appl Physiol. 2012: 112: 443–53. Available from: https://doi.org/10.1152/japplphysiol.00860.2011.
5. Dickinson JM, D'Lugos AC, Naymik MA, Siniard AL, Wolfe AJ, Curtis DP, et al. Transcriptome response of human skeletal muscle to divergent exercise stimuli. J Appl Physiol. 2018; 124: 1529–40. Available from: https://doi.org/10.1152/japplphysiol.00014.2018.
6. Damas F, Ugrinowitsch C, Libardi CA, Jannig PR, Hector AJ, Mcglory C, et al. Resistance training in young men induces muscle transcriptome-wide changes associated with muscle structure and metabolism refining the response to exercise-induced stress. Eur J Appl Physiol. 2018; 118: 2607–16. Available from: https://doi.org/10.1007/s00421-018-3984-y.
7. Raue U, Trappe TA, Estrem ST, Qian HR, Helvering LM, Smith RC, et al. Transcriptome signature of resistance exercise adaptations: Mixed muscle and fiber type specific profiles in young and old adults. J Appl Physiol. 2012; 112: 1625–36. Available from: https://doi.org/10.1152/japplphysiol.00435.2011.
8. Lundberg TR, Fernandez-Gonzalo R, Gustafsson T, Tesch PA. Aerobic exercise does not compromise muscle hypertrophy response to short-term resistance training. J Appl Physiol. 2013; 114: 81–89. Available from: https://doi.org/10.1152/japplphysiol.01013.2012.
9. Liu D, Sartor MA, Nader GA, Gutmann L, Treutelaar MK, Pistilli EE, et al. Skeletal muscle gene expression in response to resistance exercise: Sex specific regulation. BMC Genomics. 2010; 11: 659. Available from: https://doi.org/10.1186/1471-2164-11-659.
10. Nascimento EBM, Hangelbroek RWJ, GHooiveld GJEJ, Hoeks J, Van Marken Lichtenbelt WD, Hesselink MHC, et al. Comparative transcriptome analysis of human skeletal muscle in response to cold acclimation and exercise training in human volunteers. BMC Med Genomics. 2020; 13: 1–11. Available from: https://doi.org/10.1186/s12920-020-00784-z.
11. Stepto NK, Coffey VG, Carey AL, Ponnampalam AP, Canny BJ, Powell D, et al. Global gene expression in skeletal muscle from well-trained strength and endurance athletes. Med Sci Sports Exerc. 2009; 41: 546–65. Available from: https://doi.org/10.1249/MSS.0b013e31818c6be9.
12. Schoenfeld BJ, Grgic J, Ogborn D, Krieger JW. Strength and hypertrophy adaptations between low- vs. High-load resistance training: A systematic review and meta-analysis. J Strength Cond Res. 2017; 31: 3508–23. Available from: https://doi.org/10.1519/JSC.0000000000002200.
13. Krieger JW. Single Vs. Multiple Sets of Resistance. J Strength Cond Res. 2010; 24: 1150–9. Available from: htpps://doi.org/10.1519/JSC.0b013e3181d4d36
14. Schoenfeld BJ, Ogborn D, Krieger JW. Effects of Resistance Training Frequency on Measures of Muscle Hypertrophy: A Systematic Review and Meta-Analysis. Sport Med. 2016; 46: 1689–97. Available from: https://doi.org/10.1007/s40279-016-0543-8.
15. Catoire M, Mensink M, Boekschoten MV, Hangelbroek R, Müller M, Schrauwen P, et al. Pronounced Effects of Acute Endurance Exercise on Gene Expression in Resting and Exercising Human Skeletal Muscle. PLoS One. 2012; 7. Available from: https://doi.org/10.1371/journal.pone.0051066.
16. Schroder EA, Harfmann BD, Zhang X, Srikuea R, England JH, Hodge BA, et al. Intrinsic muscle clock is necessary for musculoskeletal health. J Physiol. 2015; 593: 5387–404. Available from: https://doi.org/10.1113/JP271436.
17. Shanely AR, Zwetsloot KA, Travis Triplett N, Meaney MP, Farris GE, Nieman DC. Human skeletal muscle biopsy procedures using the modified Bergstrо m technique. J Vis Exp. 2014; 1–8. Available from: https://doi.org/10.3791/51812.
18. Makhnovskii PA, Gusev OA, Bokov RO, Gazizova GR, Vepkhvadze TF, Lysenko EA, et al. Alternative transcription start sites contribute to acute-stress-induced transcriptome response in human skeletal muscle. Hum Genomics. 2022; 16: 1–13. Available from: https://doi.org/10.1186/s40246-022-00399-8.
19. Campos GER, Luecke TJ, Wendeln HK, Toma K, Hagerman FC, Murray TF et al. Muscular adaptations in response to three different resistance-training regimens: Specificity of repetition maximum training zones. Eur J Appl Physiol. 2002; 88: 50–60. Available from: https://doi.org/10.1007/s00421-002-0681-6.
20. Yapici H, Gülü M, Yagin FH, Ugurlu D, Comertpay E, Eroglu O et al. The effect of 8-weeks of combined resistance training and chocolate milk consumption on maximal strength, muscle thickness, peak power and lean mass, untrained, university-aged males. Front Physiol. 2023; 14: 1–11. Available from: https://doi.org/10.3389/fphys.2023.1148494.
21. Deane CS, Willis CRG, Phillips BE, Atherton PJ, Harries LW, Ames RM, et al. Transcriptomic meta-analysis of disuse muscle atrophy vs. resistance exercise-induced hypertrophy in young and older humans. J Cachexia Sarcopenia Muscle. 2021; 12: 629–45. Available from: https://doi.org/10.1002/jcsm.12706.
22. Pillon NJ, Gabriel BM, Dollet L, Smith JAB, Sardón Puig L, Botella J, et al. Transcriptomic profiling of skeletal muscle adaptations to exercise and inactivity. Nat Commun. 2020; 11: 470. Available from: https://doi.org/10.1038/s41467-019-13869-w.
23. Chapman MA, Arif M, Emanuelsson EB, Reitzner SM, Lindholm ME, Mardinoglu A, et al. Skeletal Muscle Transcriptomic Comparison between Long-Term Trained and Untrained Men and Women. Cell Rep. 2020; 31. Available from: https://doi.org/10.1016/j.celrep.2020.107808.
24. Dzik KP, Grzywacz T, L uszczyk M, Kujach S, Flis DJ, Kaczor JJ. Single bout of exercise triggers the increase of vitamin D blood concentration in adolescent trained boys: a pilot study. Sci Rep. 2022; 12: 1–10. Available from: https://doi.org/10.1038/s41598-022-05783-x.
25. Rundqvist HC, Montelius A, Osterlund T, Norman B, Esbjornsson M, Jansson E. Acute sprint exercise transcriptome in human skeletal muscle. PLoS One. 2019; 14: 1–24. Available from: https://doi.org/10.1371/journal.pone.0223024.
26. Makhnovskii PA, Bokov RO, Kolpakov FA, Popov DV. Transcriptomic signatures and upstream regulation in human skeletal muscle adapted to disuse and aerobic exercise. Int J Mol Sci. 2021; 22: 1–20. Available from: https://doi.org/10.3390/ijms22031208.
27. Birdsey GM, Shah AV, Dufton N, Reynolds LE, Almagro LO, Yang Y et al. The endothelial transcription factor erg promotes vascular stability and growth through Wnt/ β catenin signaling. Dev Cell. 2015; 32: 82–96. Available from: https://doi.org/10.1016/j.devcel.2014.11.016.
28. Sakuma K, Yamaguchi A. The functional role of calcineurin in hypertrophy, regeneration, and disorders of skeletal muscle. J Biomed Biotechnol. 2010; 2010. Available from: https://doi.org/10.1155/2010/721219.
29. Hudson MB, Price SR. Calcineurin: A poorly understood regulator of muscle mass. Int J Biochem Cell Biol. 2013; 45: 2173–8. Available from: https://doi.org/10.1016/j.biocel.2013.06.029.
30. Dunn SE, Burns JL, Michel RN. Calcineurin is required for skeletal muscle hypertrophy. J Biol Chem. 1999; 274: 21908–12. Available from: https://doi.org/10.1074/jbc.274.31.21908.
31. Ehlers ML, Celona B, Black BL. NFATc1 controls skeletal muscle fiber type and is a negative regulator of MyoD activity. Cell Rep. 2014; 8: 1639–48. Available from: https://doi.org/10.1016/j.celrep.2014.08.035.NFATc1.
32. Darby IA, Bisucci T, Raghoenath S, Olsson J, Muscat GEO, Koopman P. Sox18 is transiently expressed during angiogenesis in granulation tissue of skin wounds with an identical expression pattern to Flk-1 mRNA. Lab Investig. 2001; 81: 937–43. Available from: https://doi.org/10.1038/labinvest.3780304.
33. Neyroud D, Nosacka RL, Callaway CS, Trevino JG, Hu H, Judge SM, et al. FoxP1 is a transcriptional repressor associated with cancer cachexia that induces skeletal muscle wasting and weakness. J Cachexia Sarcopenia Muscle. 2021; 12: 421–42. Available from: https://doi.org/10.1002/jcsm.12666.
34. Wright WE, Li C, Zheng C, Tucker HO. FOXP1 Interacts with MyoD to Repress its Transcription and Myoblast Conversion. J Cell Signal. 2021; 2: 9–26.
35. Kurosaka M, Ogura Y, Sato S, Kohda K, Funabashi T. Transcription factor signal transducer and activator of transcription 6 (STAT6) is an inhibitory factor for adult myogenesis. Skelet Muscle. 2021; 11: 1–14. Available from: https://doi.org/10.1186/s13395-021-00271-8.
36. Yamaki T, Wu CL, Gustin M, Lim J, Jackman RW, Kandarian SC. Rel A/p65 is required for cytokine-induced myotube atrophy. Am J Physiol. Cell Physiol. 2012; 303: 135–43. Available from: https://doi.org/10.1152/ajpcell.00111.2012.
37. Arensdorf AM, Diedrichs D, Rutkowski DT. Regulation of the transcriptome by ER stress: Non-canonical mechanisms and physiological consequences. Front Genet. 2013; 4: 1–16. Available from: https://doi.org/10.3389/fgene.2013.00256.
38. Marafon BB, Pinto AP, Ropelle ER, de Moura LP, Cintra DE, Pauli JR, et al. Muscle endoplasmic reticulum stress in exercise. Acta Physiol. 2022; 235: e13799. Available from: https://doi.org/https://doi.org/10.1111/apha.13799.
39. Møller AB, Vendelbo MH, Schjerling P, Couppé C, Møller N, Kjær M et al. Immobilization decreases foxo3a phosphorylation and increases autophagy-related gene and protein expression in human skeletal muscle. Front Physiol. 2019; 10: 1–14. Available from: https://doi.org/10.3389/fphys.2019.00736.
40. Senf SM, Dodd SL, Judge AR. FOXO signaling is required for disuse muscle atrophy and is directly regulated by Hsp70. Am J Physiol. Cell Physiol. 2010; 298. Available from: https://doi.org/10.1152/ajpcell.00315.2009.
41. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell. 2004; 117: 399–412. Available from: https://doi.org/10.1016/S0092-8674(04)00400-3.
Рецензия
Для цитирования:
Леднев Е.М., Махновский П.А., Вепхвадзе Т.Ф., Султанов Р.И., Желанкин А.В., Каныгина А.В., Попов Д.В., Генерозов Э.В. Транскрипционные факторы в скелетной мышце человека, ассоциированные с однократным и регулярными силовыми упражнениями. Медицина экстремальных ситуаций. 2023;25(3):104-112. https://doi.org/10.47183/mes.2023.031
For citation:
Lednev E.M., Makhnovskii P.A., Vepkhvadze T.F., Sultanov R.I., Zhelankin A.V., Kanygina A.V., Popov D.V., Generozov E.V. Transcription factors in human skeletal muscle associated with single and regular strength exercises. Extreme Medicine. 2023;25(3):104-112. https://doi.org/10.47183/mes.2023.031