Preview

Медицина экстремальных ситуаций

Расширенный поиск

Исследование зрительного гнозиса с помощью анализа ЭЭГ-микросостояний

https://doi.org/10.47183/mes.2022.024

Аннотация

Объективная диагностика мыслительных процессов человека представляет собой важную проблему современных нейрофизиологических исследований. Целью исследования было разработать систему анализа процессов зрительного гнозиса как модели высшей нервной функции. Обследовано 30 человек в возрасте 30–60 лет, не имеющих острых заболеваний или обострений хронических заболеваний, а также выраженных проблем со зрением. Анализ электроэнцефалограмм включал подавление артефактной ЭЭГ-активности, кластеризацию с выделением отдельных ЭЭГ-микросостояний согласно выбранной модели и последующим установлением локализации основного источника активности, формирующего ЭЭГ-микросостояние, посредством алгоритмов решения обратной задачи ЭЭГ пакета программ eLORETA. При тесте на зрительный гнозис с рассматриванием письменных знаков активность была зарегистрирована над большим числом полей Бродмана, чем в состоянии пассивного расслабленного бодрствования, и затрагивала поля Бродмана 18 и 19 (11 и 45% соответственно), ответственных за зрительное восприятие образов, 39-е поле — дополнительную часть области Вернике (6%), а также структуры премоторной и префронтальных областей (поля 6–11) (до 11%) при (p < 0,001; тест хи-квадрат Пирсона). Микросостояния, определяемые во время пребывания обследуемого в состоянии расслабленного бодрствования и при выполнении зрительной нагрузки, не представляют собой идентичные феномены, а являются градуированными производными кластерного анализа в рамках используемой математической модели. Решения обратной ЭЭГ-задачи на конечном этапе исследования позволяют определить усредненные последовательности ритмической активности, связанные с реализацией функции зрительного гнозиса.

Об авторе

С. А. Гуляев
Федеральный центр мозга и нейротехнологий Федерального медико-биологического агентства; Инженерно-физический институт биомедицины Национального исследовательского ядерного университета «МИФИ»
Россия

Сергей Александрович Гуляев

ул. Островитянова, д. 1, стр. 10, г. Москва



Список литературы

1. Pearce JMS. Lord Adrian, MD, PRS, OM. Eur Neurol. 2018; 79 (1–2): 64-67. Available from: https://doi.org/10.1159/000485615.

2. Qi G, Zhao S, Ceder AA, Guan W, Yan X. Wielding and evaluating the removal composition of common artefacts in EEG signals for driving behaviour analysis. Accid Anal Prev. 2021; 159: 106223. Available from: https://doi.org/10.1016/j.aap.2021.106223.

3. Bigdely-Shamlo N, Touryan J, Ojeda A, Kothe C, Mullen T, Robbins K. Automated EEG mega-analysis I: Spectral and amplitude characteristics across studies. Neuroimage. 2020; 207: 116361. Available from: https://doi.org/10.1016/j.neuroimage.2019.116361.

4. Serra LL, Serra C. Advances in evoked potential recording. A historical review. Acta Neurol (Napoli). 1990; 12 (6): 429–39. PMID: 2080721.

5. Кулаичев А. П. Компьютерная электрофизиология и функциональная диагностика. М.: ИНФРА-М, 2007; с. 178–230. Available from: http://protein.bio.msu.ru/~akula/anEEG/AnEEG.htm.

6. Dittman Z, Munia TTK, Aviyente S. Graph Theoretic Analysis of Multilayer EEG Connectivity Networks. Annu Int Conf IEEE Eng Med Biol Soc. 2021; 2021: 475–9. Available from: https://doi.org/10.1109/EMBC46164.2021.9629514.

7. Pascual-Marqui RD, Michel CM, Lehmann D. Segmentation of brain electrical activity into microstates: model estimation and validation. IEEE Trans Biomed Eng. 1995; 42 (7): 658–65. Available from: https://doi.org/10.1109/10.391164.

8. Grech R, Cassar T, Muscat J, Camilleri KP, Fabri SG, Zervakis M, Xanthopoulos P, Sakkalis V, Vanrumste B. Review on solving the inverse problem in EEG source analysis. J Neuroeng Rehabil. 2008; 5: 25. Available from: https://doi.org/10.1186/1743-0003-5-25.

9. Hecker L, Rupprecht R, Tebartz Van Elst L, Kornmeier J. ConvDip: A Convolutional Neural Network for Better EEG Source Imaging. Front Neurosci. 2021; 15: 569918. Available from: https://doi.org/10.3389/fnins.2021.569918.

10. Lehmann D, Strik WK, Henggeler B, Koenig T, Koukkou M Brain electric microstates and momentary conscious mind states as building blocks of spontaneous thinking: I. Visual imagery and abstract thoughts. Int J Psychophysiol. 1998; 29 (1): 1–11. Available from: https://doi.org/10.1016/s01678760(97)00098-6.

11. Pascual-Marqui RD, Michel CM, Lehmann D. Segmentation of brain electrical activity into microstates: model estimation and validation. IEEE Trans Biomed Eng. 1995; 42 (7): 658–65. Available from: https://doi.org/10.1109/10.391164.

12. Mishra A, Englitz B, Cohen MX. EEG microstates as a continuous phenomenon. Neuroimage. 2020; 208: 116454. Available from: https://doi.org/10.1016/j.neuroimage.2019.116454.

13. Michel CM, Koenig T. EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: A review. Neuroimage. 2018; 180 (Pt B): 577–93. Available from: https://doi.org/10.1016/j.neuroimage.2017.11.062.

14. Sun Q, Zhou J, Guo H, Gou N, Lin R, Huang Y, Guo W, Wang X. EEG Microstates and Its Relationship With Clinical Symptoms in Patients With Schizophrenia. Front Psychiatry. 2021; 12: 761203. Available from: https://doi.org/10.3389/fpsyt.2021.761203.

15. de Bock R, Mackintosh AJ, Maier F, Borgwardt S, Riecher-Rössler A, Andreou C. EEG microstates as biomarker for psychosis in ultra-high-risk patients. Transl Psychiatry. 2020; 10 (1): 300. Available from: https://doi.org/10.1038/s41398-020-00963-7. PMID: 32839449; PMCID: PMC7445239.

16. Abreu R, Jorge J, Leal A, Koenig T, Figueiredo P. EEG Microstates Predict Concurrent fMRI Dynamic Functional Connectivity States. Brain Topogr. 2021; 34 (1): 41–55. Available from: https://doi.org/10.1007/s10548-020-00805-1.

17. Michel CM, Brunet D. EEG Source Imaging: A Practical Review of the Analysis Steps. Front Neurol. 2019; 10: 325. Available from: https://doi.org/10.3389/fneur.2019.00325.

18. Van Oosterom A. The inverse problem of bioelectricity: an evaluation. Med Biol Eng Comput. 2012; 50 (9): 891–902. Available from: https://doi.org/10.1007/s11517-012-0941-5.

19. Biscay RJ, Bosch-Bayard JF, Pascual-Marqui RD. Unmixing EEG Inverse Solutions Based on Brain Segmentation. Front Neurosci. 2018; 12: 325. Available from: https://doi.org/10.3389/fnins.2018.00325.

20. Ritter P, Villringer A. Simultaneous EEG-fMRI. Neurosci Biobehav Rev. 2006; 30 (6): 823–38. Available from: https://doi.org/10.1016/j.neubiorev.2006.06.008.

21. Sarter M Fritschy JM Reporting statistical methods and statistical results in EJN. Eur J Neurosci. 2008; 28 (12): 2363-4. Available from: https://doi.org/10.1111/j.1460-9568.2008.06581.x.

22. Croce P, Quercia A, Costa S, Zappasodi F. EEG microstates associated with intra- and inter-subject alpha variability. Sci Rep. 2020; 10 (1): 2469. Available from: https://doi.org/10.1038/s41598-020-58787-w.

23. Croce P, Spadone S, Zappasodi F, Baldassarre A, Capotosto P. rTMS affects EEG microstates dynamic during evoked activity. Cortex. 2021; 138: 302–10. Available from: https://doi.org/10.1016/j.cortex.2021.02.014.

24. Kadier N, Stein M, Koenig T. EEG Microstates and Psychosocial Stress During an Exchange Year. Brain Topogr. 2021; 34 (2): 117– 20. Available from: https://doi.org/10.1007/s10548-020-00806-0.

25. Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Brain Res Rev. 1999; 29 (2–3): 169–95. Available from: https://www.doi.org/10.1016/s0165-0173(98)00056-3.

26. Klimesch W, Sauseng P, Hanslmayr S. EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res Rev. 2007; 53 (1): 63–88. Available from: https://www.doi.org/10.1016/j.brainresrev.2006.06.003.

27. Klimesch W, Doppelmayr M, Hanslmayr S. Upper alpha ERD and absolute power: their meaning for memory performance. Prog Brain Res. 2006; 159: 151–65. Available from: https://www.doi.org/10.1016/S0079-6123(06)59010-7.


Рецензия

Для цитирования:


Гуляев С.А. Исследование зрительного гнозиса с помощью анализа ЭЭГ-микросостояний. Медицина экстремальных ситуаций. 2022;24(3):19-26. https://doi.org/10.47183/mes.2022.024

For citation:


Gulyaev S.A. Studying visual gnosis through EEG microstate analysis. Extreme Medicine. 2022;24(3):19-26. https://doi.org/10.47183/mes.2022.024

Просмотров: 12


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2713-2757 (Print)
ISSN 2713-2765 (Online)