Preview

Медицина экстремальных ситуаций

Расширенный поиск

Методы профилактики и терапии судорожного синдрома при отравлении конвульсантами холинергического ряда

https://doi.org/10.47183/mes.2022.019

Аннотация

Фосфорорганические соединения (ФОС) и карбаматы — распространенная причина отравлений, ассоциированных с развитием судорожного синдрома. Эти холинергические вещества образуют связь с ацетилхолинэстаразой (АХЭ), что способствует накоплению ацетилхолина в нервных синапсах и приводит к характерным токсическим проявлениям, в том числе к развитию судорог. Стандартная антидотная терапия обеспечивает достаточный контроль симптомов, ослабляет судороги и снижает смертность только при назначении на самой ранней стадии отравления либо при профилактическом введении. Традиционно применяют атропин, который блокирует мускариновые холинергические рецепторы в парасимпатической нервной системе и уменьшает активность сокращения гладких мышц, а также оксимы, реактивирующие обратимо ингибированную АХЭ в никотиновых холинергических синапсах скелетных мышц. Если их недостаточно, для купирования судорог и профилактики развития органических повреждений головного мозга, посттравматической эпилепсии применяют средства бензодиазепинового ряда, взаимодействующие с рецепторами γ- аминомасляной кислоты. Единых официальных руководств на случай, когда антидоты не действуют или действуют недостаточно эффективно, не существует. Нежелательные побочные эффекты и прогрессирующее снижение эффективности существующих средств через 30 мин после воздействия ФОС обуславливают необходимость поиска новых средств. Среди разрабатываемых подходов — комбинированные схемы лечения, новые лекарственные формы, создание оригинальных или модификация существующих молекул, рассмотрению которых посвящен настоящий обзор.

Об авторах

В. Н. Зорина
Научно-клинический центр токсикологии имени академика С. Н. Голикова Федерального медико-биологического агентства
Россия

Вероника Николаевна Зорина

ул. Бехтерева, д. 1, г. Санкт-Петербург, 192019



Е. А. Евдокимова
Научно-клинический центр токсикологии имени академика С. Н. Голикова Федерального медико-биологического агентства
Россия

г. Санкт-Петербург



В. Л. Рейнюк
Научно-клинический центр токсикологии имени академика С. Н. Голикова Федерального медико-биологического агентства
Россия

г. Санкт-Петербург



Список литературы

1. Разработка методологии диагностики и фармакологической коррекции последствий отравлений веществами судорожного действия. Методические рекомендации МР ФМБА России 12.08-18. М., 2018; 44 с.

2. Phillips HN, Tormoehlen L. Toxin-induced seizures. Neurol Clin. 2020; 38 (4): 867–79.

3. Куценко С. А., редактор. Военная токсикология, радиобиология и медицинская защита. СПб.: Фолиант, 2004; 528 с.

4. Alozi M, Rawas-Qalaji M. Treating organophosphates poisoning: management challenges and potential solutions. Crit Rev Toxicol. 2020; 50 (9): 764–79.

5. Reddy BS, Skaria TG, Polepalli S, Vidyasagar S, Rao M, Kunhikatta V, et al. Factors associated with outcomes in organophosphate and carbamate poisoning: a retrospective study. Toxicol Res. 2020; 36 (3): 257–66.

6. Гладких В. Д., Назаров В. Б. Реактиваторы холинэстеразы в терапии отравлений нейротропными физиологически активными веществами. Медицина экстремальных ситуаций. 2014; 1 (47): 54–6.

7. King AM, Aaron CK. Organophosphate and carbamate poisoning. Emerg Med Clin North Am. 2015; 33 (1): 133–51.

8. Eddleston M. Novel clinical toxicology and pharmacology of organophosphorus insecticide self-poisoning. Annu Rev Pharmacol Toxicol. 2019; 59: 341–60.

9. Reddy DS. Mechanism-based novel antidotes for organophosphate neurotoxicity. Curr Opin Toxicol. 2019; 14: 35–45.

10. Araujo Furtado M, Rossetti F, Chanda S, Yourick D. Exposure to nerveagents: from status epilepticus to neuroinflammation, brain damage, neurogenesis and epilepsy. Neurotoxicology. 2012; 33 (6): 1476–90.

11. Jett DA, Spriggs SM. Translational research on chemical nerve agents. Neurobiol Dis. 2020; 133: 104335.

12. Williamson J, Singh T, Kapur J. Neurobiology of organophosphateinduced seizures. Epilepsy Behav. 2019; 101 (Pt B): 106426.

13. Newmark J. Therapy for acute nerve agent poisoning: an update. Neurol Clin Pract. 2019; 9 (4): 337–42.

14. Lamb T, Selvarajah LR, Mohamed F, Jayamanne S, Gawarammana I, Mostafa A, et al. High lethality and minimal variation after acute self-poisoning with carbamate insecticides in Sri Lanka — implications for global suicide prevention. ClinToxicol (Phila). 2016; 54 (8): 624–31.

15. Wu X, Kuruba R, Reddy DS. Midazolam-resistant seizures and brain injury after acute intoxication of diisopropylfluorophosphate, an organophosphate pesticide and surrogate for nerve agents. J Pharmacol Exp Ther. 2018; 367 (2): 302–21.

16. Imran I, Koch K, Schöfer H, Lau H, Klein J. Effects of three anti-seizure drugs on cholinergic and metabolic activity in experimental status epilepticus. J Pharm Pharm Sci. 2019; 22 (1): 340–51.

17. Benzodiazepines. LiverTox: clinical and research information on drug-induced liver injury. National Institute of Diabetes and Digestive and Kidney Diseases. Bethesda (MD) [Internet]. 2012. Available from: https://www.ncbi.nlm.nih.gov/books/NBK548298.

18. Arora N, Dhiman P, Kumar S, Singh G, Monga V. Recent advances in synthesis and medicinal chemistry of benzodiazepines. Bioorg Chem. 2020; 97: 103668.

19. Morgan JE, Wilson SC, Travis BJ, Bagri KH, Pagarigan KT, Belski HM, et al. Refractory and super-refractory status epilepticus in nerve agent-poisoned rats following application of standard clinical treatment guidelines. Front Neurosci. 2021; 15: 732213.

20. Niquet J, Lumley L, Baldwin R, Rossetti F, Suchomelova L, Naylor D, et al. Rational polytherapy in the treatment of cholinergic seizures. Neurobiol Dis. 2020; 133: 104537.

21. Amengual-Gual M, Sánchez Fernández I, Wainwright MS. Novel drugs and early polypharmacotherapy in status epilepticus. Seizure. 2019; 68: 79–88.

22. Myhrer T, Aas P. Choice of approaches in developing novel medical counter measures for nerve agent poisoning. Neurotoxicology. 2014; 44: 27–38.

23. Vijayaraghavan R. Autoinjector device for rapid administration of drugs and antidotes in emergency situations and in mass casualty management. J Int Med Res. 2020; 48 (5): 300060520926019.

24. Al-Otaibi F. An overview of structurally diversified anticonvulsant agents. Acta Pharm. 2019; 69 (3): 321–44.

25. Romoli M, Mazzocchetti P, D'Alonzo R, Siliquini S, Rinaldi VE, Verrotti A, et al. Valproic acid and epilepsy: from molecular mechanisms to clinical evidences. Curr Neuropharmacol. 2019; 17 (10): 926–46.

26. Tasso SM, Moon SCh, Bruno-Blancha LE, Estiu GL. Characterization of the anticonvulsant profile of valpromide derivatives. Bioorg Med Chem. 2004; 12 (14): 3857–69.

27. Upmanyu N, Gupta S, Grover J, Mishra P. Synthesis of valproic acid derivatives and their evaluation for anticonvulsant activity. The Internet Journal of Alternative Medicine. 2008; 7 (1): 1–6. Available from: https://ispub.com/IJAM/7/1/5721.

28. Haines KM, Matson LM, Dunn EN, Ardinger CE, Stubbs RL, Bibi D, et al. Comparative efficacy of valnoctamide and secbutylpropylacetamide (SPD) in terminating nerve agent-induced seizures in pediatric rats. Epilepsia. 2019; 60 (2): 315–21.

29. Tsai YH, Lein PJ. Mechanisms of organophosphate neurotoxicity. Curr Opin Toxicol. 2021; 26: 49–60.

30. Swissa E, Bar-Klein G, Serlin Y, Weissberg I, Kamintsky L, Eisenkraft A, et al. Midazolam and isoflurane combination reduces late brain damage in the paraoxon-induced status epilepticus rat model. Neurotoxicology. 2020; 78: 99–105.

31. Bailey AM, Baum RA, Horn K, Lewis T, Morizio K, Schultz A, et al. Review of intranasally administered medications for use in the emergency department. J Emerg Med. 2017; 53 (1): 38–48.

32. Малыгин А. С. Оценка острой токсичности и нейротоксичности нового амидного производного вальпроевой кислоты и 1,3,4-тиадиазола. Медицина. 2019; 3: 37–46.

33. White HS, Alex AB, Pollock A, Hen N, Ahmad T, Wilcox KS, et al. A new derivative of valproic acid amide possesses a broad-spectrum antiseizure profile and unique activity against status epilepticus and organophosphate neuronal damage. Epilepsia. 2012; 53 (1): 131–46.

34. Mikko Gynther M, Peura L, Vernerová M, Leppänen J, Kärkkäinen J, Lehtonen M, et al. Amino acid promoieties alter valproic acid pharmacokinetics and enable extended brain exposure. Neurochem Res. 2016; 41: 2797–809.


Рецензия

Для цитирования:


Зорина В.Н., Евдокимова Е.А., Рейнюк В.Л. Методы профилактики и терапии судорожного синдрома при отравлении конвульсантами холинергического ряда. Медицина экстремальных ситуаций. 2022;24(2):14-21. https://doi.org/10.47183/mes.2022.019

For citation:


Zorina V.N., Evdokimova E.A., Rejniuk V.L. Methods for prevention and treatment of convulsive disorders associated with сholinergic convulsant intoxication. Extreme Medicine. 2022;24(2):14-21. https://doi.org/10.47183/mes.2022.019

Просмотров: 19


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2713-2757 (Print)
ISSN 2713-2765 (Online)