Вычислительный фантом для дозиметрии красного костного мозга новорожденного ребенка от инкорпорированных бета-излучателей
https://doi.org/10.47183/mes.2022.045
Аннотация
Внутреннее облучение красного костного мозга (ККМ), обусловленное техногенными остеотропными радионуклидами, может приводить к серьезным медицинским последствиям. Так, радиоактивное загрязнение реки Течи в 1950-е годы стало причиной облучения ККМ у жителей прибрежных территорий, что привело к возникновению хронического лучевого синдрома у некоторых из них, а также повысило риск развития лейкозов в когорте этих жителей. Основными источниками внутреннего облучения ККМ были остеотропные бета-излучатели 89,90Sr. Усовершенствование дозиметрии внутреннего облучения ККМ является важным этапом уточнения рисков хронического радиационного воздействия для жителей прибрежных территорий. Для оценки поглощенной энергии в ККМ от инкорпорированного 90Sr используют вычислительные фантомы, в которых можно имитировать транспорт излучений. Фантом — это репрезентативное цифровое представление геометрии костей скелета и ККМ. Целью работы было разработать вычислительный фантом скелета новорожденного ребенка для дозиметрии ККМ от инкорпорированного 90Sr. Для моделирования скелета использовали оригинальную методику SPSD (Stochastic parametric skeletal dosimetry): участки скелета с активным гемопоэзом моделировали как набор фантомов простой геометрической формы, описывающих отдельные участки костей скелета. Содержание ККМ в скелете, а также параметры фантомов оценивали на основе опубликованных результатов измерений реальных костей. В результате был сгенерирован вычислительный фантом основных участков скелета с активным гемопоэзом для новорожденного ребенка, включающий 34 фантома участков костей. Смоделированный фантом имитирует структуру костной ткани, а также вариабельность параметров скелета внутри популяции и хорошо соответствует измерениям реальных костей.
Ключевые слова
Об авторах
П. А. ШарагинРоссия
Павел Алексеевич Шарагин
ул. Воровского, д. 68-а, г. Челябинск, 454141
Е. А. Шишкина
Россия
Челябинск
Е. И. Толстых
Россия
Челябинск
Список литературы
1. Degteva MO, Shagina NB, Vorobiova MI, Shishkina EA, Tolstykh EI, Akleyev AV. Contemporary Understanding of Radioactive Contamination of the Techa River in 1949–1956. Radiats Biol Radioecol. 2016; 56 (5): 523–34. English, Russian. PMID: 30703313.
2. Krestinina LY, Epifanova S, Silkin S, Mikryukova L, Degteva M, Shagina N, Akleyev A. Chronic low-dose exposure in the Techa River Cohort: risk of mortality from circulatory diseases. Radiat Environ Biophys. 2013; 52 (1): 47–57. DOI: 10.1007/s00411-012-0438-5. Epub 2012 Nov 4.
3. Аклеев А. В. Хронический лучевой синдром у жителей прибрежных сел реки Теча. Челябинск: Книга, 2012; 464 с.
4. Preston DL, Sokolnikov ME, Krestinina LY, Stram DO. Estimates of Radiation Effects on Cancer Risks in the Mayak Worker, Techa River and Atomic Bomb Survivor Studies. Radiat Prot Dosimetry. 2017; 173 (1–3): 26–31. DOI: 10.1093/rpd/ncw316.
5. O'Reilly SE, DeWeese LS, Maynard MR, Rajon DA, Wayson MB, Marshall EL, et al. An 13 image-based skeletal dosimetry model for the ICRP reference adult female-internal electron 14 sources. Phys Med Biol. 2016; 61 (24): 8794–8824. Epub 2016 Nov 29.
6. Xu XG, Chao TC, Bozkurt A. VIP-Man: an image-based wholebody adult male model constructed from color photographs of the Visible Human Project for multi-particle Monte Carlo calculations. Health Phys. 2000; 78 (5): 476–86. DOI: 10.1097/00004032-200005000-00003. PMID: 10772019.
7. Shah AP, Bolch WE, Rajon DA, Patton PW, Jokisch DW. A pairedimage radiation transport model for skeletal dosimetry. J Nucl Med. 2005; 46 (2): 344–53. PMID: 15695796.
8. Pafundi D. Image-based skeletal tissues and electron dosimetry models for the ICRP reference pediatric age series. A dissertation presented to the graduate schools of the University of Florida in partial fulfillment of the requirements for the degree of doctor of the philosophy. University of Florida, 2009.
9. Hough M, Johnson P, Rajon D, Jokisch D, Lee C, Bolch W. An image-based skeletal dosimetry model for the ICRP reference adult male–internal electron sources. Phys Med Biol. 2011; 56 (8): 2309–46. DOI: 10.1088/0031-9155/56/8/001. Epub 2011 Mar 22.
10. Degteva MO, Tolstykh EI, Shishkina EA, Sharagin PA, Zalyapin VI, Volchkova AYu, et al. Stochastic Parametric Skeletal Dosimetry model for humans: General description. PlosOne; 2021 (submitted).
11. Sharagin PA, Shishkina EA, Tolstykh EI, Volchkova AYu, Smith MA, Degteva MO. Segmentation of hematopoietic sites of human skeleton for calculations of dose to active marrow exposed to bone-seeking radionuclides. In: RAD Conference Proceedings, 2018; (3): 154–8. DOI: 10.21175/RadProc.2018.33.
12. Шарагин П. А., Толстых Е. И., Шишкина Е. А., Дегтева М. О. Дозиметрическое моделирование кости для остеотропных бета-излучающих радионуклидов: размерные параметры и сегментация. В сборнике: Материалы международной научной конференции «Современные проблемы радиобиологии». Беларусь, Гомель, 23–24 сентября 2021. 2021; с. 200–204.
13. Толстых Е. И., Шарагин П. А., Шишкина Е. А., Дегтева М. О. Формирование доз облучения красного костного мозга человека от 89,90Sr, оценка параметров трабекулярной кости для дозиметрического моделирования. В сборнике: Материалы международной научной конференции «Современные проблемы радиобиологии». Беларусь, Гомель, 23–24 сентября 2021. 2021; с. 176–179.
14. Толстых Е. И., Шарагин П. А., Шишкина Е. А., Волчкова А. Ю. Дегтева М. О. Анатомо-морфологический базис для дозиметрического моделирования трабекулярной кости человека с использованием стохастического параметрического подхода. Клинический вестник ГНЦ ФМБЦ им. А. И. Бурназяна. 2022; 3: 25–40.
15. Shishkina EA, Timofeev YS, Volchkova AY, Sharagin PA, Zalyapin VI, Degteva MO, et al. Trabecula: A Random Generator of Computational Phantoms for Bone Marrow Dosimetry. Health Phys. 2020; 118 (1): 53–59. DOI: 10.1097/HP.0000000000001127.
16. Zalyapin VI, Timofeev YuS, Shishkina EA. A parametric stochastic model of bone geometry. Bulletin of Southern Urals State University, Issue «Mathematical Modelling. Programming & Computer Software» (SUSU MMCS). 2018; 11 (2): 44–57. DOI: 10.14529/mmp180204.
17. Cristy M. Active bone marrow distribution as a function of age in humans. Phys Med Biol. 1981; 26 (3): 389–400.
18. Vogler JB 3rd, Murphy WA. Bone marrow imaging. Radiology. 1988; 168 (3): 679–93.
19. Vande Berg BC, Malghem J, Lecouvet FE, Maldague B. Magnetic resonance imaging of the normal bone marrow. Skeletal Radiology. 1998; 27: 471–83.
20. Vande Berg BC, Malghem J, Lecouvet FE, Maldague B. Magnetic resonance imaging of normal bone marrow. Eur Radiol. 1998; 8 (8): 1327–34.
21. Taccone A, Oddone M, Dell'Acqua AD, Occhi M, Ciccone MA. MRI "road-map" of normal age-related bone marrow. II. Thorax, pelvis and extremities. Pediatr Radiol. 1995; 25 (8): 596–606; PubMed PMID: 8570312.
22. Taccone A, Oddone M, Occhi M, Dell'Acqua AD, Ciccone MA. MRI "road-map" of normal age-related bone marrow. I. Cranial bone and spine. Pediatr Radiol. 1995; 25 (8): 588–95; PubMed PMID: 8570311.
23. Cunningham C, Scheuer L, Black S. Developmental Juvenile Osteology. Elsevier Academic Press, 2016.
24. Robinson RA. Chemical analysis and electron microscopy of bone. In: Bone as a tissue, ed. by Rodahl K, Nicholson JT, Brown EM. New York: McGraw-Hill, 1960; p. 186–250.
25. Valentin J. Basic anatomical and physiological data for use in radiological protection: reference values. Annals of the ICRP. Annals of the ICRP. 32 (3–4): 1–277. 2002.
26. Медведев М. В. Ультразвуковая фетометрия: справочные таблицы и номограммы. М.: Реальное время, 2009; 19–24.
27. Florence JL. Linear and cortical bone dimensions as indicators of health status in subadults from the Milwaukee County Poor Farm Cemetery. M.A., University of Colorado at Denver, 2007.
28. Miles AEW. Growth Curves of Immature Bones from a Scottish Island Population of Sixteenth to mid-Nineteenth Century: Limb-bone Diaphyses and Some Bones of the Hand and Foot. International Journal of Osteoarcheology. 1994; 4: 121–36.
29. Maresh MM. Measurements from roentgenograms. In: Human Growth and Development (R.W. McCammon, Ed.). Springfield, IL: Charles C. Thomas, 1970; р. 157–200.
30. Jeanty P. Fetal limb biometry. Radiology. 1983; 147 (2): 601–2. DOI: 10.1148/radiology.147.2.6836145. PMID: 6836145.
31. Svadovsky VS. Age-related bone remodeling. Moscow, 1961.
32. Dhavale N, Halcrow SE, Buckley HR, Tayles N, Domett KM, Gray AR. Linear and appositional growth in infants and children from the prehistoric settlement of Ban Non Wat, Northeast Thailand: Evaluating biological responses to agricultural intensification in Southeast Asia, Journal of Archaeological Science: Reports. 2017; V11: 435–46.
33. Danforth ME, Wrobel GD, Armstrong CW, Swanson D. Juvenile age estimation using diaphyseal long bone lengths among ancient Maya populations. Latin American Antiquity. 2017; 20 (1): 3–13.
34. Beresheim AC, Pfeiffer S, Grynpas M. Ontogenetic changes to bone microstructure in an archaeologically derived sample of human ribs. J Anat. 2019. DOI: 10.1111/joa.13116.
35. Pfeiffer S. Cortical Bone Histology in Juveniles. Available from: https://www.researchgate.net/publication/303179375_Cortical_bone_histology_in_Juveniles
36. Hresko AM, Hinchcliff EM, Deckey DG, Hresko MT. Developmental sacral morphology: MR study from infancy to skeletal maturity. Eur Spine J. 2020. Available from: https://doi.org/10.1007/s00586-020-06350-6.
37. Mavrych V, Bolgova O, Ganguly P and Kashchenko S. AgeRelated Changes of Lumbar Vertebral Body Morphometry. Austin J Anat. 2014; 1 (3): 7.
38. Dimeglio A, Bonnel F, Canavese F. The Growing Spine. In: Spinal Anatomy. Modern Concepts. Springer. 2020; 25–52.
39. Андронеску А. Анатомия ребенка. Бухарест: Меридиан, 1970.
40. Bernert Zs, Évinger S, Hajdu T. New data on the biological age estimation of children using bone measurements based on historical populations from the Carpathian Basin. Annales HistoricoNaturales Musei Nationalis Hungarici. 2007; 99: 199–206.
41. Gindhart PS. Growth Standards for the Tibia and Radius in Children Aged One Month through Eighteen Years. Am J Phys Anthrop. 1973; 39: 41–48.
42. Suominen PK, Nurmi E, Lauerma K. Intraosseous access in neonates and infants: risk of severe complications - a case report. Acta Anaesthesiol Scand. 2015; 59 (10): 1389–93. DOI: 10.1111/aas.12602. Epub 2015 Aug 24. PubMed PMID: 26300243.
43. Blake KAS. An investigation of sex determination from the subadult pelvis: A morphometric analysis. Doctoral Dissertation, University of Pittsburgh. 2011.
44. Cunningham CA, Black SM. Iliac cortical thickness in the neonate — the gradient effect. J Anat. 2009; 215 (3): 364–70. DOI: 10.1111/j.1469-7580.2009.01112.x.
45. Cunningham CA, Black SM. Anticipating bipedalism: trabecular organization in the newborn ilium. J Anat. 2009; 214 (6): 817–29. DOI: 10.1111/j.1469-7580.2009.01073.x.
46. Corron L, Marchal F, Condemi S, Chaumoître K, Adalian P. A New Approach of Juvenile Age Estimation using Measurements of the Ilium and Multivariate Adaptive Regression Splines (MARS) Models for Better Age Prediction. Forensic Sci. 2017; 62 (1): 18– 29. DOI: 10.1111/1556-4029.13224.
47. Yusof NA, Soames RW, Cunningham CA, Black SM. Anat Rec (Hoboken). Growth of the human ilium: the anomalous sacroiliac junction 2013; 296 (11): 1688–94. DOI: 10.1002/ar.22785.
48. Schnitzler CM, Mesquita JM, Pettifor JM. Cortical bone development in black and white South African children: iliac crest histomorphometry. Bone. 2009; 44 (4): 603–11. DOI: 10.1016/j.one.2008.12.009.
49. De Boer HH, Van der Merwe AE, Soerdjbalie-Maikoe VV. Human cranial vault thickness in a contemporary sample of 1097 autopsy cases: relation to body weight, stature, age, sex and ancestry. Int J Legal Med. 2016; 130 (5): 1371–7. DOI: 10.1007/s00414-016-1324-5.
50. Margulies S, Coats B. Experimental Injury Biomechanics of the Pediatric Head and Brain. In: Pediatric Injury Biomechanics. New York: Springer Science + Business Media, 2013; 157–190.
51. Li Z, Park BK, Liu W, Zhang J, Reed MP, Rupp JD, et al. A statistical skull geometry model for children 0–3 years old. PLoS One. 2015; 10 (5): e0127322. DOI: 10.1371/journal.pone.0127322. eCollection 2015.
52. Rodriguez-Florez N, Ibrahim A, Hutchinson JC, Borghi A, James G, Arthurs OJ, et al. Cranial bone structure in children with sagittal craniosynostosis: Relationship with surgical outcomes. J Plast Reconstr Aesthet Surg. 2017; 70 (11): 1589–97. DOI: 10.1016/j.bjps.2017.06.017.
53. Fazekas IGy. and Kósa F. Forensic Fetal Osteology. Budapest: Akadémiai Kiadó, 1978.
54. Sherer D, Sokolovski M, Dalloul M, Khoury-Collado F, Osho J, Lamarque M, et al. Fetal clavicle length throughout gestation: a nomogram. Ultrasound in Obstetrics and Gynecology. 2006; 27: 306–10.
55. McGraw MA, Mehlman CT, Lindsell CJ, Kirby CL. Postnatal growth of the clavicle: birth to eighteen years of age. Journal of Pediatric Orthopedics. 2009; 29: 937.
56. Black SM. and Scheuer JL. Age changes in the clavicle: from the early neonatal period to skeletal maturity. International Journal of Osteoarchaeology. 1996; 6: 425–34.
57. Bernat A, Huysmans T, Van Glabbeek F, Sijbers J, Gielen J, Van Tongel A. The anatomy of the clavicle: a three-dimensional cadaveric study. Clin Anat. 2014; 27 (5): 712–23.
58. Fujita T, Orimo H, Ohata M, Yoshikawa M. Changes in the cortical thickness of the clavicle according to age. J Am Geriatr Soc. 1968; 16 (4): 458–62.
59. Raziye D, Ceren U, Kadir D, Osman S, Mehmed Ali M. A Radiological Investigation on the Hand Development in Human Fetuses Throughout the Fetal Period and an Evaluation Performed in Terms of its Clinical Importance Hand Development. International Journal of Morphology. International Journal of Morphology. 2016; 34: 1539–52. DOI: 10.4067/s0717-95022016000400057.
60. Corrigan GE. The neonatal scapula. Biol Neonat. 1960; 2: 159–67. PubMed PMID: 13695677.
61. Hrdlicka A. The scapula: visual observations. Am J Phys Anthropol. 1942; 29: 73–94.
62. Vallois HV. L’omoplate humaine. Bulletin de la Sociétié d’Anthropolgie de Paris. 1946; 7: 16–99.
63. Saunders S, Hoppa R, Southern R. Diaphyseal growth in a nineteenth-century skeletal sample of subadults from St Thomas’ Church, Belleville, Ontario. International Journal of Osteoarchaeology. 1993; 3: 265–81.
64. Хомутова Е. Ю. Анатомия шейного отдела позвоночника новорожденных при лучевых методах исследования [диссертация]. Санкт-Петербург, 2005.
65. Sharma N, Jain SK, Singh PK, Rohin Garg. A morphometric study of predictors for sexual dimorphism of cervical part of vertebral column in human fetuses. Journal of the Anatomical Society of India. 2017; 66: 135–39.
66. Kneissel M, Roschger P, Steiner W, Schamall D, Kalchhauser G, Boyde A, et al. Cancellous Bone Structure in the Growing and Aging Lumbar Spine in a Historic Nubian Population. Calcif Tissue Int. 1997; 61: 95–100.
67. Ponrartana S, Aggabao PC, Dharmavaram NL, Fisher CL, Friedlich P, Devaskar SU, et al. Sexual Dimorphism in Newborn Vertebrae and its Potential Implications. J Pediatr. 2015; 167: 416–21.
68. Борисов Б. К. Весовые показатели развития скелета плода человека и содержание в нем стронция и кальция. М.: Государственный комитет по использованию атомной энергии СССР, 1973; 14 с.
Рецензия
Для цитирования:
Шарагин П.А., Шишкина Е.А., Толстых Е.И. Вычислительный фантом для дозиметрии красного костного мозга новорожденного ребенка от инкорпорированных бета-излучателей. Медицина экстремальных ситуаций. 2022;24(4):74-82. https://doi.org/10.47183/mes.2022.045
For citation:
Sharagin P.A., Shishkina E.A., Tolstykh E.I. Computational phantom for red bone marrow dosimetry from incorporated beta emitters in a newborn baby. Extreme Medicine. 2022;24(4):74-82. https://doi.org/10.47183/mes.2022.045