Preview

Extreme Medicine

Advanced search

Computational phantom for red bone marrow dosimetry in 15-year-old adolescents

https://doi.org/10.47183/mes.2025-396

Abstract

Introduction. Computational phantoms are widely used for assessing radiation doses to the red bone marrow (RBM) from bone-seeking radionuclides. Among them, strontium isotopes are the most common. The development of phantoms for 89,90Sr requires accurate description of bone shape, size, and microarchitecture. To date, phantoms for newborns, one-year-old, five-year-old, and 10-year-old children, as well as for adult males and females, have been proposed. This study is a continuation of our work on creating digital skeletal models for humans of different sexes and ages.

Objective. Development of computational phantoms for the skeleton for 15-year-old adolescents with the purpose of assessing doses in RBM from incorporated beta-emitting radionuclides.

Materials and methods. The phantoms were developed using the stochastic parametric skeletal dosimetry (SPSD) approach. Skeletal regions with active hematopoiesis were identified and segmented. The parameters of the segment models were estimated based on literature data, including bone microstructural characteristics, cortical bone layer thickness, bone and segment dimensions, the fractional content of RBM, and the chemical composition and density of the modeled media. The variability ranges of these parameters were also assessed.

Results. The developed phantoms for 15-year-old male and female adolescents comprise 46 segments each; parameters for 14 of these segments differed between males and females. The phantom dimensions ranged 3.5–66 mm; the cortical bone thickness varied 0.3–2.3 mm.

Conclusions. The phantoms developed in this work reflect the dimensions and structure of skeletal regions with active hematopoiesis in 15-year-old adolescents, account for sexual dimorphism, and simulate the variability of skeletal characteristics.

About the Authors

P. A. Sharagin
Southern Urals Federal Research and Clinical Center for Medical Biophysics
Russian Federation

Pavel A. Sharagin

Ozersk



E. I. Tolstykh
Southern Urals Federal Research and Clinical Center for Medical Biophysics
Russian Federation

Evgenia I. Tolstykh, Dr. Sci. (Biol.)

Ozersk



E. A. Shishkina
Southern Urals Federal Research and Clinical Center for Medical Biophysics; Chelyabinsk State University
Russian Federation

Elena A. Shishkina, Dr. Sci. (Biol.)

Ozersk; Chelyabinsk



References

1. Krestinina LY, Epifanova S, Silkin S, Mikryukova L, Degteva M, Shagina N, et al. Chronic low-dose exposure in the Techa River Cohort: risk of mortality from circulatory diseases. Radiation ang Environmental Biophysics. 2013;52(1):47–57. https://doi.org/10.1007/s00411-012-0438-5

2. Akleyev AV. Chronic radiation syndrome among residents of the Techa River riverside villages. Chelyabinsk: Book; 2012 (In Russ.).

3. Preston DL, Sokolnikov ME, Krestinina LY, Stram DO. Estimates of Radiation Effects on Cancer Risks in the Mayak Worker, Techa River and Atomic Bomb Survivor Studies. Radiation Protection Dosimetry. 2017;173(1–3):26–31. https://doi.org/10.1093/rpd/ncw316

4. Spiers FW, Beddoe AH, Whitwell JR. Mean skeletal dose factors for beta-particle emitters in human bone. Part I: volume-seeking radionuclides. The British Journal of Radiology.1978;51(608):622–7. https://doi.org/10.1259/0007-1285-51-608-622

5. Degteva MO, Napier BA, Tolstykh EI, Shishkina EA, Shagina NB, Volchkova AY, et al. Enhancements in the Techa River Dosimetry System: TRDS-2016D Code for Reconstruction of Deterministic Estimates of Dose from Environmental Exposures. Health Physics. 2019;117(4):378–87. https://doi.org/10.1097/HP.0000000000001067

6. O’Reilly SE, DeWeese LS, Maynard MR, Rajon DA, Wayson MB, Marshall EL, et al. An image-based skeletal dosimetry model for the ICRP reference adult female–internal electron sources. Physics in Medicine and Biology. 2016;61(24):8794–824. https://doi.org/10.1088/1361-6560/61/24/8794

7. Xu XG, Chao TC, Bozkurt A. VIP-Man: an image-based whole-body adult male model constructed from color photographs of the Visible Human Project for multi-particle Monte Carlo calculations. Health Physics. 2000;78(5):476–86. https://doi.org/10.1097/00004032-200005000-00003

8. Shah AP, Bolch WE, Rajon DA, Patton PW, Jokisch DW. A paired-image radiation transport model for skeletal dosimetry. Journal of Nuclear Medicine. 2005;46(2):344–53.

9. Hough M, Johnson P, Rajon D, Jokisch D, Lee C, Bolch W. An image-based skeletal dosimetry model for the ICRP reference adult male–internal electron sources. Physics in Medicine and Biology. 2011;56(8):2309–46. https://doi.org/10.1088/0031-9155/56/8/001

10. Bolch WE, Eckerman, K, Endo A, Hunt JGS, Jokisch DW, Kim CH, et al. ICRP Publication 143: Paediatric Reference Computational Phantoms. Annals of the ICRP. 2020;49(1):5–297.

11. Degteva MO, Tolstykh EI, Shishkina EA, Sharagin PA, Zalyapin VI, Volchkova AY, et al. Stochastic parametric skeletal dosimetry model for humans: General approach and application to active marrow exposure from bone-seeking beta-particle emitters. PLOS One. 2021;16(10):e0257605. https://doi.org/10.1371/journal.pone.0257605

12. Sharagin PA, Shishkina EA, Tolstykh EI. Computational red bone marrow dosimetry phantom of a one-year-old child enabling assessment of exposure due to incorporated beta emitters. Extreme Medicine. 2023;24(4):74–82 (In Russ.). https://doi.org/10.47183/mes.2022.045

13. Sharagin PA, Shishkina EA, Tolstykh EI. Computational red bone marrow dosimetry phantom of a one-year-old child enabling assessment of exposure due to incorporated beta emitters. Extreme Medicine. 2023;25(3):44–55 (In Russ.). https://doi.org/10.47183/mes.2023.030

14. Sharagin PA, Tolstykh EI, Shishkina EA. Computational phantom for a 5-year old child red bone marrow dosimetry due to incorporated beta emitters. Extreme Medicine. 2023;25(4):86–97 (In Russ.). https://doi.org/10.47183/mes.2023.061

15. Sharagin PA, Tolstykh EI, Shishkina EA. Computational phantom for the dosimetry of the red bone marrow of a 10-year-old child due to incorporated beta-emitters. Extreme Medicine. 2024;26(2):38–48 (In Russ.). https://doi.org/10.47183/mes.2024.032

16. Sharagin PA, Tolstykh EI, Shishkina EA. Computational phantom for red bone marrow dosimetry in adult males and females. Extreme Medicine. 2025;27(2):220–8 (In Russ.). https://doi.org/10.47183/mes.2025-286

17. Cristy M. Active bone marrow distribution as a function of age in humans. Physics in Medicine and Biology. 1981;26(3):389–400. https://doi.org/10.1088/0031-9155/26/3/003

18. Robinson RA. Chemical analysis and electron microscopy of bone. Bone as a tissue. New York: McGraw-Hill; 1960.

19. Vogler JB. 3rd, Murphy WA. Bone marrow imaging. Radiology. 1988;1683:679–93. https://doi.org/10.1148/radiology.168.3.3043546

20. Vande Berg BC, Malghem J, Lecouvet FE, Maldague B. Magnetic resonance imaging of the normal bone marrow. Skeletal Radiology. 1998;27:471–83. https://doi.org/10.1007/s002560050423

21. Vande Berg BC, Malghem J, Lecouvet FE, Maldague B. Magnetic resonance imaging of normal bone marrow. European Radiology. 1998;8(8):1327–34. https://doi.org/10.1007/s003300050547

22. Taccone A, Oddone M, Dell’Acqua AD, Occhi M, Ciccone MA. MRI “road-map” of normal age-related bone marrow. II. Thorax, pelvis and extremities. Pediatric Radiology. 1995;25(8):596–606. https://doi.org/10.1007/bf02011826

23. Taccone A, Oddone M, Occhi M, Dell’Acqua AD, Ciccone MA. MRI «road-map» of normal age-related bone marrow. I. Cranial bone and spine. Pediatric Radiology. 1995;25(8):588–95. https://doi.org/10.1007/bf02011825

24. Tolstykh EI, Sharagin PA, Shishkina EA, Volchkova AYu, Smith MA, Napier BA. Stochastic parametric skeletal dosimetry model for human: anatomical-morphological basis and parameter evaluation. PLOS One. 2025;20(7):e0327156. https://doi.org/10.1371/journal.pone.0327156

25. Sharagin PA, Shishkina EA, Tolstykh EI, Volchkova AYu, Smith MA, Degteva MO. Segmentation of hematopoietic sites of human skeleton for calculations of dose to active marrow exposed to bone-seeking radionuclides. Conference proceedings of sixth international conference on radiation and applications in various fields of research. Macedonia; 2018. https://doi.org/10.21175/RadProc.2018.33

26. Shishkina EA, Sharagin PA, Volchkova AYu. Analytical Description of the Dose Formation in Bone Marrow due to 90Sr Incorporated in Calcified Tissues. Radiation Safety Issues. 2021;3:72–82 (In Russ.). EDN: LYGTKD

27. Valentin J. Basic anatomical and physiological data for use in radiological protection: reference values. Annals of the ICRP. 2002;32(3–4):1–277. https://doi.org/10.1016/S0146-6453(03)00002-2

28. Woodard HQ, White DR. The composition of body tissues. British Journal of Radiology. 1986;59:1209–18. https://doi.org/10.1259/0007-1285-59-708-1209

29. Shishkina EA, Timofeev YS, Volchkova AY, Sharagin PA, Zalyapin VI, Degteva MO, et al. Trabecula: A Random Generator of Computational Phantoms for Bone Marrow Dosimetry. Health Physics. 2020;118(1):53–9. https://doi.org/10.1097/hp.0000000000001127

30. Parisien MV, McMahon D, Pushparaj N, Dempster DW. Trabecular architecture in iliac crest bone biopsies: infra-individual variability in structural parameters and changes with age. Bone.1988;9(5):289–95. https://doi.org/10.1016/8756-3282(88)90012-9

31. Hazrati Marangalou J, Ito K, Taddei F, van Rietbergen B. Inter-individual variability of bone density and morphology distribution in the proximal femur and T12 vertebra. Bone. 2014;60:213–20. https://doi.org/10.1016/j.bone.2013.12.019

32. Van Dessel J, Huang Y, Depypere M, Rubira-Bullen I, Maes F, Jacobs R. A comparative evaluation of cone beam CT and micro-CT on trabecular bone structures in the human mandible. Dento Maxillo Facial Radiology. 2013;42(8):20130145. https://doi.org/10.1259/dmfr.20130145

33. Fanuscu MI, Chang TL. Three-dimensional morphometric analysis of human cadaver bone: microstructural data from maxilla and mandible. Clinical Oral Implants Research. 2004;15(2):213–8. https://doi.org/10.1111/j.1600-0501.2004.00969.x

34. Ibrahim N, Parsa A, Hassan B, van der Stelt P, Aartman IH, Nambiar P. Influence of object location in different FOVs on trabecular bone microstructure measurements of human mandible: a cone beam CT study. Dento Maxillo Facial Radiology. 2014;43(2):20130329. https://doi.org/10.1259/dmfr.20130329

35. Shishkina EA, Sharagin PA, Tolstykh EI, Smith MA, Napier BA, Degteva MO. Uncertainty of stochastic parametric approach to bone marrow dosimetry of 89,90 Sr. Heliyon. 2024;10(4):e26275. https://doi.org/10.1016/j.heliyon.2024.e26275

36. Sharagin PA, Shishkina EA, Tolstykh EI, Smith MA, Napier BA. Stochastic parametric skeletal dosimetry model for humans: Pediatric and adult computational skeleton phantoms for internal bone marrow dosimetry. PLOS One. 2025;20(7):e0327479. https://doi.org/10.1371/journal.pone.0327479


Supplementary files

Review

For citations:


Sharagin P.A., Tolstykh E.I., Shishkina E.A. Computational phantom for red bone marrow dosimetry in 15-year-old adolescents. Extreme Medicine. https://doi.org/10.47183/mes.2025-396

Views: 22


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2713-2757 (Print)
ISSN 2713-2765 (Online)