Preview

Медицина экстремальных ситуаций

Расширенный поиск

Перспективы терапии рака молочной железы с использованием онколитических вирусов

https://doi.org/10.47183/mes.2021.044

Аннотация

Рак молочной железы (РМЖ) — онкологическое заболевание с высокой распространенностью и смертностью среди женщин во всем мире. Диагностика РМЖ не столь эффективна для выявления заболевания на ранних стадиях, а терапевтические методы связаны с тяжелыми побочными эффектами. Онколитические вирусы могут стать новым эффективным средством в терапии РМЖ. Их эффективность обусловлена двумя типами воздействия на раковую опухоль: непосредственным уничтожением опухолевых клеток и запуском противоопухолевого иммунного ответа. Повысить эффективность терапии онколитическими вирусами можно путем конструирования генетически-модифицированных вирусов, обладающих лучшей селективностью к опухолевым клеткам молочной железы и (или) способных к большему усилению противоопухолевого иммунного ответа. Представлены дальнейшие направления применения онколитических вирусов в терапии РМЖ, оптимальные пути доставки вирусов в опухоль и эффективность их использования в комбинации с другими терапевтическими средствами (методами), а также перспектива использования онколитических вирусов в качестве противоопухолевых вакцин.

Об авторе

А. В. Благов
Центр стратегического планирования Федерального медико-биологического агентства
Россия

Александр Владимирович Благов,

д. 5, к. 6, ул. Щукинская, г. Москва, 123182. 



Список литературы

1. Shah R, Rosso K, Nathanson SD. Pathogenesis, prevention, diagnosis and treatment of breast cancer. World J Clin Oncol. 2014; 5 (3): 283–98. DOI: 10.5306/wjco.v5.i3.283.

2. Государственное казенное учреждение здравоохранения Пермского края «Пермский краевой центр по профилактике и борьбе со СПИД и инфекционными заболеваниями». Всемирный День борьбы с РМЖ (дата обращения 14.06.2021). Доступно по ссылке: www.aids-centr.perm.ru/Новости-центра/Всемирный-День-борьбы-с-раком-молочнойжелезы234234234234234234234.

3. Feng Y, Spezia M, Huang S, et al. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 2018; 5 (2): 77–106. DOI: 10.1016/j.gendis.2018.05.001.

4. Всемирная организация здравоохранения. Рак (дата обращения 15.06.2021). Доступно по ссылке: www.who.int/ru/news-room/fact-sheets/detail/cancer.

5. Treating Breast Cancer. (date views 15.06.2021). Available from: www.cancer.org/cancer/breast-cancer/treatment.html.

6. Radiation for Breast Cancer (date views 15.06.2021). Available from: www.cancer.org/cancer/breast-cancer/treatment/radiationfor-breast-cancer.html.

7. Collins KK, Liu Y, Schootman M, et al. Effects of breast cancer surgery and surgical side effects on body image over time. Breast Cancer Res Treat. 2011; 126 (1): 167–76. DOI: 10.1007/s10549010-1077-7.

8. Chemotherapy Side Effects (date views 15.06.2021). Available from: www.cancer.org/treatment/treatments-and-side-effects/treatment-types/chemotherapy/chemotherapy-side-effects.html.

9. Evgin L, Vile RG. Parking CAR T Cells in Tumours: Oncolytic Viruses as Valets or Vandals? Cancers (Basel). 2021; 13 (5): 1106. DOI: 10.3390/cancers13051106.

10. Feng Y, Spezia M, Huang S, et al. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 2018; 5 (2): 77–106. DOI: 10.1016/j.gendis.2018.05.001.

11. Клинические рекомендации. Рак молочной железы. П.1.5. 2021. Министерство здравоохранения Российской Федерации.

12. Fallahpour S, Navaneelan T, De P, Borgo A. Breast cancer survival by molecular subtype: a population-based analysis of cancer registry data. CMAJ Open. 2017; 5 (3): E734–E739. DOI: 10.9778/cmajo.20170030.

13. Howlader N, Cronin KA, Kurian AW, Andridge R. Differences in Breast Cancer Survival by Molecular Subtypes in the United States. Cancer Epidemiol Biomarkers Prev. 2018; 27 (6): 619–26. DOI: 10.1158/1055-9965.EPI-17-0627.

14. Al-Thoubaity FK. Molecular classification of breast cancer: A retrospective cohort study. Ann Med Surg. 2019; 49: 44–48. DOI: 10.1016/j.amsu.2019.11.021.

15. Brufsky AM, Dickler MN. Estrogen Receptor-Positive Breast Cancer: Exploiting Signaling Pathways Implicated in Endocrine Resistance. Oncologist. 2018; 23 (5): 528–39. DOI: 10.1634/ theoncologist.2017-0423.

16. Wee P, Wang Z. Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways. Cancers. 2017; 9 (5): 52. DOI: 10.3390/cancers9050052.

17. Corrigan PA, Beaulieu C, Patel RB, Lowe DK. Talimogene Laherparepvec: An Oncolytic Virus Therapy for Melanoma. Ann Pharmacother. 2017; 51 (8): 675–81. DOI: 10.1177/1060028017702654.

18. 12 Studies found for: oncolytic viruses. Breast Cancer. Available from: https://clinicaltrials.gov/ct2/results?cond=Breast+Cancer&term=oncolytic+viruses&cntry=&state=&city=&dist= (дата обращения: 10.09.2021).

19. Chiocca EA, Rabkin SD. Oncolytic viruses and their application to cancer immunotherapy [published correction appears in Cancer Immunol Res. 2014; 2 (7): 699] Cancer Immunol Res. 2014; 2 (4): 295–300. DOI: 10.1158/2326-6066.CIR-14-0015.

20. O Bryan SM, Mathis JM. Oncolytic Virotherapy for Breast Cancer Treatment. Curr Gene Ther. 2018; 18 (4): 192–205. DOI: 10.2174/1566523218666180910163805.

21. Lawler SE, Speranza MC, Cho CF, Chiocca EA. Oncolytic viruses in cancer treatment: a review. JAMA Oncol. 2017; 3 (6): 841–9. DOI: 10.1001/jamaoncol.2016.2064.

22. Nakashima H, Kaur B, Chiocca EA. Directing systemic oncolytic viral delivery to tumors via carrier cells. Cytokine Growth Factor Rev. 2010; 21 (2–3): 119–26. DOI: 10.1016/j.cytogfr.2010.02.004.

23. Russell SJ, Peng KW, Bell JC. Oncolytic virotherapy. Nat Biotechnol. 2012; 30 (7): 658–70. DOI: 10.1038/nbt.2287.

24. Kretschmer M, Kadlubowska P, Hoffmann D, Schwalbe B, Auerswald H, Schreiber M. Zikavirus prME Envelope Pseudotyped Human Immunodeficiency Virus Type-1 as a Novel Tool for Glioblastoma-Directed Virotherapy. Cancers. 2020; 12 (4): 1000. DOI: 10.3390/cancers12041000.

25. Melcher A, Parato K, Rooney CM, Bell JC. Thunder and lightning: immunotherapy and oncolytic viruses collide. Mol Ther. 2011; 19 (6): 1008–16. DOI: 10.1038/mt.2011.65.

26. Chaurasiya S, Fong Y. Viroimmunotherapy for breast cancer: promises, problems and future directions [published online ahead of print, 2020 Dec 2]. Cancer Gene Ther. 2020; DOI: 10.1038/s41417-020-00265-6.

27. Bauerschmitz GJ, Ranki T, Kangasniemi L, Ribacka C, Eriksson M, Porten M, et al. Tissue-specific promoters active in CD44+CD24–/ low breast cancer cells. Cancer Res. 2008; 68: 5533–9.

28. Xu W, Yang Y, Hu Z, Head M, Mangold KA, Sullivan M, et al. LyP1-modified oncolytic adenoviruses targeting transforming growth factor beta inhibit tumor growth and metastases and augment immune checkpoint inhibitor therapy in breast cancer mouse models. Hum Gene Ther. 2020; 31: 15–6.

29. Menotti L, Cerretani A, Hengel H, Campadelli-Fiume G. Construction of a fully retargeted herpes simplex virus 1 recombinant capable of entering cells solely via human epidermal growth factor receptor 2. J Virol. 2008; 82: 10153–61.

30. Shayestehpour M, Moghim S, Salimi V, et al. Targeting human breast cancer cells by an oncolytic adenovirus using microRNAtargeting strategy. Virus Res. 2017; 240: 207–14. DOI: 10.1016/j.virusres.2017.08.016.

31. Platonov ME, Borovjagin AV, Kaverina N, et al. KISS1 tumor suppressor restricts angiogenesis of breast cancer brain metastases and sensitizes them to oncolytic virotherapy in vitro. Cancer Lett. 2018; 417: 75–88. DOI: 10.1016/j.canlet.2017.12.024.

32. Mohamed Amin Z, Ani MAC, Tan SW, et al. Evaluation of a recombinant newcastle disease virus expressing human IL12 against human breast cancer. Sci Rep. 2019; 9 (1): 1–10. Available from: https://doi.org/10.1038/s41598-019-50222-z.

33. Yan Y, Xu H, Wang J, et al. Inhibition of breast cancer cells by targeting E2F-1 gene and expressing IL15 oncolytic adenovirus Biosci Rep. 2019; 39 (7). Available from: https://doi.org/10.1042/BSR20190384.

34. Chon HJ, Lee WS, Yang H, Kong SJ, Lee NK, Moon ES, et al. Tumor microenvironment remodeling by intratumoral oncolytic vaccinia virus enhances the efficacy of immune-checkpoint blockade. Clin Cancer Res. 2019; 25: 1612–23.

35. Liikanen I, Tähtinen S, Guse K, et al. Oncolytic Adenovirus Expressing Monoclonal Antibody Trastuzumab for Treatment of HER2-Positive Cancer. Mol Cancer Ther. 2016; 15 (9): 2259–69. DOI: 10.1158/1535-7163.MCT-15-0819.

36. Gholami S, Marano A, Chen NG, Aguilar RJ, Frentzen A, Chen CH, et al. A novel vaccinia virus with dual oncolytic and anti-angiogenic therapeutic effects against triple-negative breast cancer. Breast Cancer Res Treat. 2014; 148: 489–99.

37. Martini V, D'Avanzo F, Maggiora PM, Varughese FM, Sica A, Gennari A. Oncolytic virotherapy: new weapon for breast cancer treatment. E Cancer Medicals Science. 2020; 14: 1149. DOI: 10.3332/ecancer.2020.1149.

38. Iankov ID, Msaouel P, Allen C, et al. Demonstration of anti-tumor activity of oncolytic measles virus strains in a malignant pleural effusion breast cancer model. Breast Cancer Res Treat. 2010; 122 (3): 745–54. DOI: 10.1007/s10549-009-0602-z.

39. McGray AJR, Huang RY, Battaglia S, Eppolito C, Miliotto A, Stephenson KB, et al. Oncolytic Maraba virus armed with tumor antigen boosts vaccine priming and reveals diverse therapeutic response patterns when combined with checkpoint blockade in ovarian cancer. J Immunother Cancer. 2019; 7: 189.

40. Kwan A, Winder N, Muthana M. Oncolytic Virotherapy Treatment of Breast Cancer: Barriers and Recent Advances. Viruses. 2021; 13 (6): 1128. DOI: 10.3390/v13061128.

41. Bourgeois-Daigneault MC, St-Germain LE, Roy DG, et al. Combination of Paclitaxel and MG1 oncolytic virus as a successful strategy for breast cancer treatment. Breast Cancer Res. 2016; 18 (1): 83. DOI: 10.1186/s13058-016-0744-y.

42. Bernstein V, Ellard SL, Dent SF, et al. A randomized phase II study of weekly paclitaxel with or without pelareorep in patients with metastatic breast cancer: final analysis of Canadian Cancer Trials Group IND.213. Breast Cancer Res Treat. 2018; 167 (2): 485–93. DOI: 10.1007/s10549-017-4538-4.

43. Wang S, Jhawar S, Bommareddy P, Thandoni A, Aspromonte S, Pepe R, et al. Combined radiation and oncolytic viral therapy augments cytotoxic and immunogenic antitumor effects against melanoma. Int J Radiat Oncol. 2018; 102: S153–S154. DOI: 10.1016/j.ijrobp.2018.06.371.

44. O'Cathail SM, Pokrovska TD, Maughan TS, Fisher KD, Seymour LW, Hawkins MA. Combining Oncolytic Adenovirus with Radiation-A Paradigm for the Future of Radiosensitization. Front Oncol. 2017; 7: 153. DOI: 10.3389/fonc.2017.00153.

45. Chung V, Kos FJ, Hardwick N, et al. Evaluation of safety and efficacy of p53MVA vaccine combined with pembrolizumab in patients with advanced solid cancers. Clin Transl Oncol. 2019; 21 (3): 363–72. DOI: 10.1007/s12094-018-1932-2.

46. Kelly CM, Antonescu CR, Bowler T, et al. Objective response rate among patients with locally advanced or metastatic sarcoma treated with talimogene laherparepvec in combination with pembrolizumab: a phase 2 clinical trial. JAMA Oncol. 2020; 6 (3): 402–8. DOI: 10.1001/jamaoncol.2019.6152.


Рецензия

Для цитирования:


Благов А.В. Перспективы терапии рака молочной железы с использованием онколитических вирусов. Медицина экстремальных ситуаций. 2021;23(4):34-41. https://doi.org/10.47183/mes.2021.044

For citation:


Blagov A.V. Recombinant adeno-associated viruses as a gene delivery vehicle for the use in molecular medicine. Extreme Medicine. 2021;23(4):34-41. https://doi.org/10.47183/mes.2021.044

Просмотров: 11


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2713-2757 (Print)
ISSN 2713-2765 (Online)