Probability of infectious disease in humans during epidemic
https://doi.org/10.47183/mes.2021.007
Abstract
Popular SIR models and their modifications used to generate predictions about epidemics and, specifically, the COVID-19 pandemic, are inadequate. The aim of this study was to find the laws describing the probability of infection in a biological object. Using theoretical methods of research based on the probability theory, we constructed the laws describing the probability of infection in a human depending on the infective dose and considering the temporal characteristics of a given infection. The so-called generalized time-factor law, which factors in the time of onset and the duration of an infectious disease, was found to be the most general. Among its special cases are the law describing the probability of infection developing by some point in time t, depending on the infective dose, and the law that does not factor in the time of onset. The study produced a full list of quantitative characteristics of pathogen virulence. The laws described in the study help to solve practical tasks and should lie at the core of mathematical epidemiological modeling.
About the Authors
A. M. KarmishinRussian Federation
Alexandr M. Karmishin
Shchukinskaya, 5/6, Moscow, 123182
I. V. Borisevich
Russian Federation
Moscow
V. I. Skvortsova
Russian Federation
Moscow
A. A. Goryaev
Russian Federation
Moscow
S. M. Yudin
Russian Federation
Moscow
References
1. Sajt Vsemirnoj organizacii zdravoohranenija. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (data obrashhenija 21 aprelja 2020 g.). Russian.
2. Harko T, Lobo FSN, Mak MK. Exact analytical solutions of the Susceptible-Infected-Recovered (SIR) epidemic model and of the SIR model with equal death and birth rates. Applied Mathematics and Computation. 2014 236: 184–194. DOI: 10.1016/j.amc.2014.03.030.Sir.
3. Bejli N. Matematika v biologii i medicine. M.: Mir, 1970. Russian.
4. Karmishin AM, Semochkina EA, Chernykh AO. Kvalimetricheskoe opisanie himicheskoj bezopasnosti: tezisy doklada. V sbornike: Materialy Vserossijskoj nauchno-prakticheskoj konferencii, posvjashhennoj 55 letiju FGUP «NII GPJeCh» FMBA Rossii, 17 fevralja 2017 g., g. Sankt-Peterburg. SPb.: Izd. Politehn. un-ta, 2017; s. 70–72. Russian.
5. Karmishin AM, Gumenyuk VI, Makarov ML. Teoreticheskie aspekty obosnovanija kolichestvennyh pokazatelej opasnosti avarij potencial'no opasnyh promyshlennyh ob"ektov/zhurnal Problemy bezopasnosti i chrezvychajnyh situacij. M.: VINITI, 2019; s. 51–66. Russian.
6. Karmishin AM, Kireev VA. Matematicheskie metody farmakologii i toksikologii. M.: VU RHB zashhity, 2005; 180 s. Russian.
7. Karmishin AM. Uspehi teoreticheskoj toksikologii i farmakologii/ tezisy doklada. V sbornike: Materialy Vserossijskoj nauchno- prakticheskoj konferencii, posvjashhennoj 55-letiju FGUP «NII GPJeCh» FMBA Rossii, 17 fevralja 2017 g., g. Sankt-Peterburg. SPb.: izd. Politehn. un-ta, 2017; s. 68–70. Russian.
8. Karmishin AM, Kireev VA, Berezin GI, Afanasyev RV. Matematicheskie metody farmakologii, toksikologii i radiobiologii. M.: APR, 2011; 330 s. Russian.
9. Kärber G. Beitrag sur kollektiven Behandlung pharmakologisher reihen-versucher. Arch exp Path. 1931; 162: 480–3.
10. Finney DJ. Probit analisis. Cambridg: Cambridg University Press, 1977; p. 333.
11. Bliss CI. The method of probits. Scince. 1934; 79: 38–39.
12. Karmishin AM, Gumenyuk VI, Zaharov VP. Obosnovanie zakona raspredelenija sluchajnoj velichiny ushherba pri tehnogennoj avarii. V sbornike: Nedelja nauki SPbPU 14–19 nojabrja 2016 g.: materialy nauchnoj konferencii s mezhdunarodnym uchastiem. Luchshie doklady. SPb.: SPBPU, 2016; 406–11. Russian.
13. Karmishin AM, Kireev VA, Zaonegin SV, Gladkih VD, i dr. K voprosu ocenki toksichnosti himicheski opasnyh veshhestv pri chrezvychajnyh situacijah himicheskoj prirody. Himicheskaja i biologicheskaja bezopasnost'. Special'nyj vypusk, posvjashhennyj Federal'noj celevoj programme «Nacional'naja sistema himicheskoj i biologicheskoj bezopasnosti Rossijskoj Federacii (2009–20014 gody)». 2012; p. 117–21. Russian.
14. Karmishin AM, Kireev VA, Gumenyuk VI. Ocenka prostranstvenno- vremennyh pokazatelej opasnosti tehnogennyh avarij. V sbornike: Bezopasnost' v chrezvychajnyh situacijah: sbornik nauchnyh trudov V vserossijskoj nauchno-prakticheskoj konferencii. SPb.: izd-vo Politehn. un-ta, 2013; s. 70–77. Russian.
15. Karmishin AM, Gumenyuk VI, Kireev VA. Problemnye voprosy promyshlennoj bezopasnosti. Nauchno-tehnicheskie vedomosti SPbGPU. 2013; 2 (178): 320–4. Russian.
16. Karmishin AM, Kireev VA, Gumenyuk VI. K voprosu o kolichestvennyh pokazateljah opasnosti tehnogennyh avarij. Nauchno-tehnicheskie vedomosti. SPb., 2013; 2 (171): 281–8. Russian.
17. Karmishin AM, Karnjushkin AI, Reznichek VF. Gumenyuk V I. Obshhie integral'nye predstavlenija pokazatelej opasnosti tehnogennyh avarij. Bezopasnost' v tehnosfere. 2013; 6: 38–45. Russian.
18. Bogomolov BP. Infekcionnye bolezni: neotlozhnaja diagnostika, lechenie, profilaktika. M.: N'judiamed, 2007; 652 s. Russian.
19. Pokrovskij VI, i dr. Infekcionnye bolezni i jepidemiologija. M.: GEOTAR-MEDIA, 2013; 1007 s. Russian.
20. Tamm MV. Koronavirusnaja infekcija v Moskve: prognozy i scenarii. Sovremennaja farmakojekonomika i farmakojepidemiologija. 2020; 13 (1): 43–51. Russian.
21. Dostupno po ssylke (data obrashhenija 4.11.2020): https://www.newsru.com/russia/09oct2020/sbercovidpeak.html. Russian.
Review
For citations:
Karmishin A.M., Borisevich I.V., Skvortsova V.I., Goryaev A.A., Yudin S.M. Probability of infectious disease in humans during epidemic. Extreme Medicine. 2021;23(1):5-11. https://doi.org/10.47183/mes.2021.007