Поражение печени у больных COVID-19
https://doi.org/10.47183/mes.2022.009
- Р Р‡.МессенРТвЂВВВВВВВВжер
- РћРТвЂВВВВВВВВнокласснРСвЂВВВВВВВВРєРСвЂВВВВВВВВ
- LiveJournal
- Telegram
- ВКонтакте
- РЎРєРѕРїРСвЂВВВВВВВВровать ссылку
Полный текст:
Аннотация
Спектр клинических проявлений инфекции SARS-CoV-2 продолжает расширяться, возникают важные фундаментальные вопросы, касающиеся ее клеточного тропизма и патогенетических механизмов. Повреждение печени происходит при всех формах COVID-19, особенно при тяжелых и крайне тяжелых, что может быть связано с прямым вирусным поражением, иммунной дисрегуляцией (системным воспалительным ответом и цитокиновым штормом), гипоксическим/ишемическим повреждением, лекарственной гепатотоксичностью и сопутствующими хроническими заболеваниями. Повреждение печени, определяемое в основном по повышению уровней трансаминаз, часто обнаруживают у пациентов с COVID-19, и оно коррелирует с клиническими исходами, включая смертность. Диагностические критерии, патогенез, клинические характеристики, лечение и прогноз поражения печени при COVID-19 должны быть уточнены в дальнейших клинических исследованиях. В настоящее время критически не хватает проверенных вариантов лечения пациентов с COVID-19, что приводит к неотложной необходимости изучения патогенеза полиорганной недостаточности и повреждения печени при этом заболевании. В обзоре представлена информация о патофизиологических механизмах повреждения печени коронавирусом SARSCoV-2 и развитии печеночной недостаточности при COVID-19. Поиск источников информации проведен в базе данных PubMed по ключевым словам «liver damage in COVID-19» и «immune liver damage in COVID-19».
Об авторах
Д. А. ВологжанинРоссия
Санкт-Петербург.
А. С. Голота
Россия
Александр Сергеевич Голота,
ул. Борисова, д. 9, лит. Б, 197706, г. Санкт-Петербург.
Т. А. Камилова
Россия
Санкт-Петербург.
С. В. Макаренко
Россия
Санкт-Петербург.
С. Г. Щербак
Россия
Санкт-Петербург.
Список литературы
1. Skok K, Stelzl E, Trauner M, et al. Post‐mortem viral dynamics and tropism in COVID-19 patients in correlation with organ damage. Virchows Arch. 2021; 478 (2): 343-53. https://doi.org/10.1007/s00428-020-02903-8.
2. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 2020; 383 (2): 120-8. https://doi.org/10.1056/NEJMoa2015432.
3. Cabibbo G, Rizzo GEM, Stornello C, Craxì A. SARS-CoV-2 infection in patients with a normal or abnormal liver. J Viral Hepat. 2021; 28 (1): 4-11. https://doi.org/10.1111/jvh.13440.
4. Nardo AD, Schneeweiss-Gleixner M, Bakail M, et al. Pathophysiological mechanisms of liver injury in COVID-19. Liver Int. 2021; 41 (1): 20-32. https://doi.org/10.1111/liv.14730.
5. Amin М. COVID-19 and the liver: overview. Eur J Gastroenterol Hepatol. 2021; 33 (3): 309-11. https://doi.org/10.1097/MEG.0000000000001808.
6. Yadav DK, Singh A, Zhang Q, et al. Involvement of liver in COVID-19: systematic review and meta-analysis. Gut. 2021; 70 (4): 807-9. https://doi.org/10.1136/gutjnl-2020-322072.
7. Kulkarni AV, Kumar P, Tevethia HV, et al. Systematic review with meta-analysis: liver manifestations and outcomes in COVID-19. Aliment Pharmacol Ther. 2020; 52 (4): 584-99. https://doi.org/10.1111/apt.15916.
8. Wang X, Lei J, Li Z, Yan L. Potential Effects of Coronaviruses on the Liver: An Update. Front Med (Lausanne). 2021; 8: 651658. https://doi.org/10.3389/fmed.2021.651658.
9. Merola E, Pravadelli C, de Pretis G. Prevalence of liver injury in patients with coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis. Acta Gastroenterol Belg. 2020; 83 (3): 454-60. PMID: 33094594.
10. Mohandas S, Vairappan B. SARSCoV2 infection and the gutliver axis. J Dig Dis. 2020; 21 (12): 687-95. https://doi.org/10.1111/17512980.12951.
11. Li Y, Xiao SY. Hepatic involvement in COVID-19 patients: Pathology, pathogenesis, and clinical implications. J Med Virol. 2020; 92 (9): 1491-4. https://doi.org/10.1002/jmv.25973.
12. Butikofer S, Lenggenhager D, Wendel Garcia PD, et al. Secondary sclerosing cholangitis as cause of persistent jaundice in patients with severe COVID19. Liver Int. 2021; 41 (10): 2404-17. https://doi.org/10.1111/liv.14971.
13. McConnell MJ, Kondo R, Kawaguchi N, Iwakiri Y. COVID-19 and liver injury: role of inflammatory endotheliopathy, platelet dysfunction and thrombosis. Hepatol Commun. 2022; 6 (2): 255- 69. https://doi.org/10.1002/hep4.1843.
14. Kaur S, Hussain S, Kolhe K, et al. Elevated plasma ICAM1 levels predict 28-day mortality in cirrhotic patients with COVID-19 or bacterial sepsis. JHEP Rep. 2021; 3 (4): 100303. https://doi.org/10.1016/j.jhepr.2021.100303.
15. Zhao J-N, Fan Y, Wu S-D. Liver injury in COVID-19: A minireview. World J Clin Cases. 2020; 8 (19): 4303-10. https://doi.org/10.12998/wjcc.v8.i19.4303.
16. Beigmohammadi MT, Jahanbin B, Safaei M, et al. Pathological findings of postmortem biopsies from lung, heart, and liver of 7 deceased COVID-19 patients. Int J Surg Pathol. 2021; 29 (2): 135-45. https://doi.org/10.1177/1066896920935195.
17. Fanni D, Cerrone G, Saba L, et al. Thrombotic sinusoiditis and local diffuse intrasinusoidal coagulation in the liver of subjects affected by COVID-19: the evidence from histology and scanning electron microscopy. Eur Rev Med Pharmacol Sci. 2021; 25 (19): 5904-12. https://doi.org/10.26355/eurrev_202110_26866.
18. Wang Y, Liu S, Liu H, et al. SARS-CoV-2 infection of the liver directly contributes to hepatic impairment in patients with COVID-19. J Hepatol. 2020; 73 (4): 807-16. https://doi.org/10.1016/j.jhep.2020.05.002.
19. Schmit G, Lelotte J, Vanhaebost J, et al. The liver in COVID-19related death: protagonist or innocent bystander? Pathobiology. 2021; 88 (1): 88-94. https://doi.org/10.1159/000512008.
20. Cai Q, Huang D, Yu H, et al. COVID-19: abnormal liver function tests. J Hepatol. 2020; 73 (3): 566-74. https://doi.org/10.1016/j.jhep.2020.04.006.
21. Stebbing J, Sanchez Nievas G, Falcone M, et al. JAK inhibition reduces SARS-CoV-2 liver infectivity and modulates inflammatory responses to reduce morbidity and mortality. Sci Adv. 2021; 7 (1): eabe4724. https://doi.org/10.1126/sciadv.abe4724.
22. Kim WY, Kweon OJ, Cha MJ, et al. Dexamethasone may improve severe COVID-19 via ameliorating endothelial injury and inflammation: A preliminary pilot study. PLoS One. 2021; 16 (7): e0254167. https://doi.org/10.1371/journal.pone.0254167.
23. Raschi E, Caraceni P, Poluzzi E, De Ponti F. Baricitinib, JAK inhibitors and liver injury: a cause for concern in COVID-19? Expert Opin Drug Saf. 2020; 19: 1367-69. https://doi.org/10.1080/14740338.2020.1812191.
24. Naeem A, Khamuani MK, Kumar P, et al. Impact of coronavirus diseases on liver enzymes. Cureus. 2021; 13 (9): e17650. https://doi.org/10.7759/cureus.17650.
25. Cornberg M, Buti M, Eberhardt CS, Grossi PA, Shouval D. EASL position paper on the use of COVID-19 vaccines in patients with chronic liver diseases, hepatobiliary cancer and liver transplant recipients. J Hepatol. 2021; 74 (4): 944-51. https://doi.org/10.1016/j.jhep.2021.01.032.
26. Hundt MA, Deng Y, Ciarleglio MM, et al. Abnormal liver tests in COVID-19: a retrospective observational cohort study of 1827 patients in a major U.S. hospital network. Hepatology. 2020; 72 (4): 1169-76. https://doi.org/10.1002/HEP.31487.
27. Pirisi M, Rigamonti C, D’Alfonso S, et al. Liver infection and COVID-19: the electron microscopy proof and revision of the literature. Eur Rev Med Pharmacol Sci. 2021; 25 (4): 2146-51. https://doi.org/10.26355/eurrev_202102_25120.
28. Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020; 395 (10234): 1417-18. https://doi.org/10.1016/S0140-6736(20)30937-5.
29. Duarte-Neto AN, Monteiro RA, da Silva LF, et al. Pulmonary and systemic involvement in COVID-19 patients assessed with ultrasound-guided minimally invasive autopsy. Histopathology. 2020; 77: 186-97. https://doi.org/10.1111/his.14160.
30. Sonzogni A, Previtali G, Seghezzi M, et al. Liver histopathology in severe COVID 19 respiratory failure is suggestive of vascular alterations. Liver Int. 2020; 40 (9): 2110-16. https://doi.org/10.1111/liv.14601.
31. Fogarty H, Townsend L, Morrin H, et al. Persistent endotheliopathy in the pathogenesis of long COVID syndrome. J Thromb Haemost. 2021; 19 (10): 2546-53. https://doi.org/10.1111/jth.15490.
32. Rapkiewicz A, Carsons S, Pittaluga S, et al. Megakaryocytes and platelet-fibrin thrombi characterize multi-organ thrombosis at autopsy in COVID-19: A case series. EClinicalMedicine. 2020; 24: 100434. https://doi.org/10.1016/j.eclinm.2020.100434.
33. Musa S. Hepatic and gastrointestinal involvement in coronavirus disease 2019 (COVID-19): What do we know till now? Arab J Gastroenterol. 2020; 21 (1): 3-8. https://doi.org/10.1016/j.ajg.2020.03.002.
34. Chen LY, Chu HK, Bai T, et al. Liver damage at admission is an independent prognostic factor for COVID-19. J Dig Dis. 2020; 21 (9): 512-18. https://doi.org/10.1111/1751-2980.12925.
35. Mushtaq K, Khan MU, Iqbal F, et al. NAFLD is a predictor of liver injury in COVID-19 hospitalized patients but not of mortality, disease severity on the presentation or progression - The debate continues. J Hepatol. 2021; 74 (2): 482-84. https://doi.org/10.1016/j.jhep.2020.09.006.
36. Williamson EJ, Walker AJ, Bhaskaran K, et al. OpenSAFELY: factors associated with COVID-19-related hospital death in the linked electronic health records of 17 million adult NHS patients. Nature. 2020; 584 (7821): 430-36. https://doi.org/10.1038/s41586-020-2521-4.
37. Barry A, Apisarnthanarax S, O'Kane GM, et al. Management of primary hepatic malignancies during the COVID-19 pandemic: recommendations for risk mitigation from a multidisciplinary perspective. Lancet Gastroenterol Hepatol. 2020; 5 (8): 765-75. https://doi.org/10.1016/S2468-1253(20)30182-5.
38. Gosain R, Abdou Y, Singh A, et al. COVID-19 and cancer: a comprehensive review. Curr Oncol Rep. 2020. 8; 22 (5): 53. https://doi.org/10.1007/s11912-020-00934-7.
39. D'Antiga L. Coronaviruses and immunosuppressed patients: the facts during the Third Epidemic. Liver Transpl. 2020; 26 (6): 832- 4. https://doi.org/10.1002/lt.25756.
40. SECURE CIRRHOSIS REGISTRY. https://covidcirrhosis.web.unc.edu/updates-and-data. Accessed 14.12.2021.
41. Marjot T, Moon AM, Cook JA, et al. Outcomes following SARS-CoV-2 infection in patients with chronic liver disease: An international registry study. J Hepatol. 2021; 74 (3): 567-77. https://doi.org/10.1016/j.jhep.2020.09.024.
42. Cheung KS, Hung IFN, Chan PPY, et al. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from a Hong Kong cohort: systematic review and meta- analysis. Gastroenterology. 2020; 159 (1): 81-95. https://doi.org/10.1053/j.gastro.2020.03.065.
43. Amirian ES. Potential fecal transmission of SARS-CoV-2: Current Evidence and Implications for Public Health. Int J Infect Dis. 2020; 95: 363-70. https://doi.org/10.1016/j.ijid.2020.04.057.
44. Han D, Fang Q, Wang X. SARS-CoV-2 was found in the bile juice from a patient with severe COVID-19. J Med Virol. 2021; 93 (1): 102-4. https://doi.org/10.1002/jmv.26169.
45. Vespa E, Pugliese N, Colapietro F, Aghemo A. STAY (GI) HEALTHY: COVID-19 and gastrointestinal manifestations. Tech Innov Gastrointest Endosc. 2021; 23 (2): 179-89. https://doi.org/10.1016/j.tige.2021.01.006.
46. Filbin MR, Mehta A, Schneider AM, et al. Longitudinal proteomic analysis of severe COVID-19 reveals survivalassociated signatures, tissue-specific cell death, and cell-cell interactions. Cell Rep Med. 2021; 2 (5): 100287. https://doi.org/10.1016/j.xcrm.2021.100287.
Рецензия
Для цитирования:
Вологжанин Д.А., Голота А.С., Камилова Т.А., Макаренко С.В., Щербак С.Г. Поражение печени у больных COVID-19. Медицина экстремальных ситуаций. 2022;24(1):13-20. https://doi.org/10.47183/mes.2022.009
For citation:
Vologzhanin D.A., Golota A.S., Kamilova T.A., Makarenko S.V., Sсherbak S.G. Liver damage in patients with COVID-19. Extreme Medicine. 2022;24(1):13-20. https://doi.org/10.47183/mes.2022.009
ISSN 2713-2765 (Online)