Multipotent mesenchymal stem cells: prospects for use in the treatment of injuries sustained in the Far North
https://doi.org/10.47183/mes.2024.029
Abstract
The review compares promising approaches to treatment of skin and bone tissue injuries sustained under extreme conditions that employ mesenchymal stem cells. The materials have been extracted from Google Scholar and PubMed. We describe key factors of the Arctic region that affect human epidermis and bone tissues, as well as those that complicate their healing in case of injury. The reviewed papers allowed identifying promising products that have a multifaceted effect on the tissue repair processes, which are those employing mesenchymal stem cells, their exosomes, and recombinant growth factors in combination with biomaterials. Medical products developed for treatment of injuries sustained in the Arctic conditions can be used for wounds sustained in other extreme environments.
About the Authors
M. V. VolkovaRussian Federation
Marina Viktorovna Volkova
Novy Arbat, 32, Moscow, 121099
P. S. Eremin
Russian Federation
Novy Arbat, 32, Moscow, 121099
P. A. Markov
Russian Federation
Novy Arbat, 32, Moscow, 121099
References
1. Katamanova EV, Rukavishnikov VS, Lahman OL, Shevchenko OI, Denisova IA. Kognitivnye narushenija pri toksicheskom porazhenii mozga. Zhurnal nevrologii i psihiatrii. 2015; 2: 11–15. Russian.
2. Dobbs RM. Toxic encephalopathy. Semin Neurol. 2011; 31 (2): 184–93.
3. Eicher T, Avery E. Toxic encephalopathies. Neurol Clin. 2005; 23 (2): 353–76.
4. Wylie AC, Short SJ. Environmental Toxicants and the Developing Brain. Biol Psychiatry. 2023; b93 (10): b921–33.
5. Gagnon-Chauvin A, Bastien K, Saint-Amour D. Environmental toxic agents: The impact of heavy metals and organochlorides on brain development. Handb Clin Neurol. 2020; 173: 423–42.
6. McNeish BL, Kolb N. Toxic Neuropathies. Continuum (Minneap Minn). 2023; 29 (5): 1444–68.
7. Brambrink AM, Orfanakis A, Kirsch JR. Anesthetic neurotoxicity. Anesthesiol Clin. 2012; 30 (2): 207–28.
8. Macko DE, Korshunov AG. Atlas opuholej central'noj nervnoj sistemy. SPb.: Izd. RNHI im. prof. A. L. Polenova, 1998; 200 s. Russian.
9. Gulevskaja TS, Morgunov VA. Patologicheskaja anatomija narushenij mozgovogo krovoobrashhenija pri ateroskleroze i arterial'noj gipertenzii. M.: Medicina, 2009; 294 s. Russian.
10. Medvedev YuA, Zabrodskaja YuM. Novaja koncepcija proishozhdenija bifurkacionnyh anevrizm arterij osnovanija golovnogo mozga. SPb.: Jeskulap, 2000; 168 s. Russian.
11. Gaikova ON, Ananeva NI, Zabrodskaja YuM. Morfologicheskie projavlenija obshhepatologicheskih processov v nervnoj sisteme. SPb.: Ves', 2015; 158 s. Russian.
12. Ermohin PN. Gistopatologija central'noj nervnoj sistemy. M.: Medicina, 1969; 244 s. Russian.
13. Litvincev BS. Nevrologicheskie narushenija pri narkomanii: principy diagnostiki i terapii. Voenno-medicinskaja akademija imeni S. M. Kirova. SPb.: VmedA, 2018; 167 s. Russian.
14. Litvincev BS. Porazhenija nervnoj sistemy pri narkomanii. Voennomedicinskaja akademija imeni S. M. Kirova. SPb.: VMedA, 2018; 160 s. Russian.
15. Moreno-García A, Kun A, Calero O, Medina M, Calero M. An Overview of the Role of Lipofuscin in Age-Related Neurodegeneration. Front Neurosci. 2018; 12: 464.
16. Hellas JA, Andrew RD. Neuronal Swelling: A Non-osmotic Consequence of Spreading Depolarization. Neurocrit Care. 2021; 35 (2): 112–34.
17. Kim AA, Indiaminov SI, Assatulaev AF. Osobennosti porazhenija struktury golovnogo mozga pri otravlenii ugarnym gazom na fone termicheskoj travmy i alkogol'noj intoksikacii. Zhurnal biomediciny i praktiki. 2021; 6 (4): 247–54. Russian.
18. Petrov LV, Salova IYu. Harakteristika ochagovyh izmenenij golovnogo mozga pri ostrom otravlenii okis'ju ugleroda. Uchenye zapiski SPbGMU im. akad. I. P. Pavlova. 2012; XIX (2): 61–64. Russian.
19. Petrov AN, Vojcehovich KO, Melehova AS, Lisickij DS, Belskaja AV, Mihajlova MV, i dr. Problemy diagnostiki nejrotoksicheskih narushenij — posledstvij otravlenij veshhestvami sudorozhnogo dejstvija. Vestnik Rossijskoj voenno-medicinskoj akademii. 2017; 3 (59): 211–17. Russian.
20. Torshin VI, Kastyro IV, Reshetov IV, Kostyaeva MG, Popadyuk VI. The Relationship between p53-Positive Neurons and Dark Neurons in the Hippocampus of Rats after Surgical Interventions on the Nasal Septum. Dokl Biochem Biophys. 2022; 502 (1): 30–35.
21. Blümcke I, Thom M, Aronica E, et al. The clinic-pathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission. Epilepsia. 2011; 52 (1): 158–74.
22. Hu X, Wang JY, Gu R, Qu H, Li M, Chen L, et al. The relationship between the occurrence of intractable epilepsy with glial cells and myelin sheath — an experimental study. Eur Rev Med Pharmacol Sci. 2016; 20 (21): 4516–24. PMID: 27874947.
23. Lapato AS, Szu JI, Hasselmann JPC, et al. Chronic demyelinationinduced seizures. Neuroscience. 2017; 27 (346): 409–22.
24. Kim SH, Choi J. Pathological Classification of Focal Cortical Dysplasia (FCD): personal comments for well understanding FCD classification. J Korean Neurosurg Soc. 2019; 62 (3): 288–95.
25. Lanigan LG, Russell DS, Woolard KD, Pardo ID, Godfrey V, Jortner BS, et al. Comparative Pathology of the Peripheral Nervous System. Vet Pathol. 2021; 58 (1): 10–33.
Review
For citations:
Volkova M.V., Eremin P.S., Markov P.A. Multipotent mesenchymal stem cells: prospects for use in the treatment of injuries sustained in the Far North. Extreme Medicine. 2024;26(2):5-12. https://doi.org/10.47183/mes.2024.029