Структурные и функциональные изменения в головном мозге космонавтов под влиянием микрогравитации
https://doi.org/10.47183/mes.2024.008
Аннотация
Во время космического полета космонавты вынуждены приспосабливаться к новым специфическим условиям окружающей среды. Это приводит к накоплению изменений в организме, которые в конечном счете могут вызывать нежелательные последствия, способные оказывать негативное влияние на успех проводимой миссии. В обзоре рассмотрены публикации, посвященные функциональным и структурным изменениям головного мозга, происходящим во время космического полета. Основным фактором, вызывающим описываемые изменения, считается микрогравитация, приводящая к перераспределению жидкости в организме, а также обуславливающая адаптационные нейронные перестройки на микроструктурном уровне. Помимо этого, затрагиваются и другие факторы космического полета, способные оказывать влияние на головной мозг. Рассмотрены также публикации, на основе которых можно выдвигать предположения о конкретных причинах наблюдаемых морфофункциональных перестроек в головном мозге космонавтов.
Ключевые слова
Об авторах
К. В. ЛатарцевРоссия
Константин Владимирович Латарцев
ул. Щукинская, д. 5, ст. 2, г. Москва, 123182
П. Н. Демина
Россия
ул. Щукинская, д. 5, ст. 2, г. Москва, 123182
В. А. Яшина
Россия
ул. Щукинская, д. 5, ст. 2, г. Москва, 123182
Р. Р. Каспранский
Россия
ул. Щукинская, д. 5, ст. 2, г. Москва, 123182
Список литературы
1. Rabin R, et al. Effects of spaceflight on the musculoskeletal system: NIH and NASA future directions. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 1993; 7 (5): 396–8.
2. Demertzi A, et al. Cortical reorganization in an astronaut’s brain after long-duration spaceflight. Brain Structure and function. 2016; 221: 2873–6.
3. Рюмин О. О. Вопросы психологического обеспечения пилотируемых межпланетных полетов. Авиакосм. и экол. мед. 2017; 51 (4): 15.
4. Nasrini J, et al. Cognitive performance in long-duration Mars simulations at the Hawaii space exploration analog and simulation (HI-SEAS). NASA Human Research Program Investigators’ Workshop. 2017; 1–2.
5. Nelson ES, Mulugeta L, Myers JG. Microgravity-induced fluid shift and ophthalmic changes. Life. 2014; 4 (4): 621–65.
6. Roberts DR, et al. Effects of spaceflight on astronaut brain structure as indicated on MRI. New England Journal of Medicine. 2017; 377 (18): 1746–53.
7. Van Ombergen A, et al. Brain tissue–volume changes in cosmonauts. New England Journal of Medicine. 2018; 379 (17): 1678–80.
8. Van Ombergen A, et al. Brain ventricular volume changes induced by long-duration spaceflight. Proceedings of the National Academy of Sciences. 2019; 116 (21): 10531–6.
9. Lee JK, et al. Spaceflight-associated brain white matter microstructural changes and intracranial fluid redistribution. JAMA neurology. 2019; 76 (4): 412–9.
10. Kramer LA, et al. Intracranial effects of microgravity: a prospective longitudinal MRI study. Radiology. 2020; 295 (3): 640–8.
11. Hupfeld KE, et al. Longitudinal MRI-visible perivascular space (PVS) changes with long-duration spaceflight. Scientific Reports. 2022; 12 (1): 7238.
12. McGregor HR, et al. Impacts of spaceflight experience on human brain structure. Scientific Reports. 2023; 13 (1): 7878.
13. Карпенко М. П., Давыдов Д. Г., Чмыхова Е. В. Обучение экипажей в ходе длительных космических полетов как средство поддержания социализации и когнитивных способностей космонавтов. Авиакосмическая и экологическая медицина. 2018; 52 (6): 19–25.
14. Kanas N, et al. Psychology and culture during long-duration space missions. Springer Berlin Heidelberg. 2013; 153–84.
15. Jamšek M, et al. Effects of simulated microgravity and hypergravity conditions on arm movements in normogravity. Frontiers in Neural Circuits. 2021; 15: 750176.
16. Seidler RD, et al. Future research directions to identify risks and mitigation strategies for neurostructural, ocular, and behavioral changes induced by human spaceflight: A NASA-ESA expert group consensus report. Frontiers in Neural Circuits. 2022; 16: 876789.
17. Kunavar T, et al. Effects of local gravity compensation on motor control during altered environmental gravity. Frontiers in Neural Circuits. 2021; 15: 750267.
18. Tays GD, et al. The effects of long duration spaceflight on sensorimotor control and cognition. Frontiers in neural circuits. 2021; 15: 723504.
19. Strangman GE, Sipes W, Beven G. Human cognitive performance in spaceflight and analogue environments. Aviation, space, and environmental medicine. 2014; 85 (10): 1033–48.
20. Cassady K, et al. Effects of a spaceflight analog environment on brain connectivity and behavior. Neuroimage. 2016; 141: 18–30.
21. Stella AB, et al. Neurophysiological adaptations to spaceflight and simulated microgravity. Clinical Neurophysiology. 2021; 132 (2): 498–504.
22. Koppelmans V, et al. Study protocol to examine the effects of spaceflight and a spaceflight analog on neurocognitive performance: extent, longevity, and neural bases. BMC neurology. 2013; 13: 1–15.
23. Doroshin A, et al. Brain connectometry changes in space travelers after long-duration spaceflight. Frontiers in neural circuits. 2022; 16: 6.
24. Koppelmans V, et al. Brain structural plasticity with spaceflight. npj Microgravity. 2016: 2 (1): 2.
25. Jillings S, et al. Macro-and microstructural changes in cosmonauts’ brains after long-duration spaceflight. Science advances. 2020; 6 (36): eaaz9488.
26. Jillings S, et al. Prolonged microgravity induces reversible and persistent changes on human cerebral connectivity. Communications Biology. 2023; 6 (1): 46.
27. Pechenkova E, et al. Alterations of functional brain connectivity after long-duration spaceflight as revealed by fMRI. Frontiers in Physiology. 2019; 10: 761.
28. Li K, et al. Effect of simulated microgravity on human brain gray matter and white matter–evidence from MRI. PloS one. 2015; 10 (8): e0135835.
29. Salazar AP, et al. Changes in working memory brain activity and task-based connectivity after long-duration spaceflight. Cerebral Cortex. 2023; 33 (6): 2641–54.
30. Van Ombergen A, et al. Intrinsic functional connectivity reduces after first-time exposure to short-term gravitational alterations induced by parabolic flight. Scientific Reports. 2017; 7 (1): 3061.
31. Koppelmans V, et al. Brain plasticity and sensorimotor deterioration as a function of 70 days head down tilt bed rest. PloS one. 2017; 12 (8): e0182236.
32. Miller AD, et al. Human Cortical Activity during Vestibular‐and Drug‐Induced Nausea Detected Using MSI a. Annals of the New York Academy of Sciences. 1996; 781 (1): 670–2.
33. Mammarella N. The effect of microgravity-like conditions on high-level cognition: a review. Frontiers in Astronomy and Space Sciences. 2020; 7: 6.
34. Garrett-Bakelman FE, et al. The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight. Science. 2019; 364 (6436): eaau8650.
35. Cullen KE. Vestibular processing during natural self-motion: implications for perception and action. Nature Reviews Neuroscience. 2019; 20 (6): 346–63.
36. Carriot J, Mackrous I, Cullen KE. Challenges to the vestibular system in space: how the brain responds and adapts to microgravity. Frontiers in neural circuits. 2021; 15: 760313.
37. Kowiański P, et al. BDNF: a key factor with multipotent impact on brain signaling and synaptic plasticity. Cellular and molecular neurobiology. 2018; 38: 579–93.
38. Silhol M, et al. Spatial memory training modifies the expression of brain-derived neurotrophic factor tyrosine kinase receptors in young and aged rats. Neuroscience. 2007; 146 (3): 962–73.
39. Okamoto M, et al. High-intensity intermittent training enhances spatial memory and hippocampal neurogenesis associated with BDNF signaling in rats. Cerebral Cortex. 2021; 31 (9): 4386–97.
40. Каминская А. Н. и др. Обучение и формирование памяти в сопоставлении с распределением pCREB и белковых агрегатов в нейромышечных контактах у Drosophila melanogaster при полиморфизме limk1. Генетика. 2015; 51 (6): 685.
41. Lin CY, et al. Brain-derived neurotrophic factor increases vascular endothelial growth factor expression and enhances angiogenesis in human chondrosarcoma cells. Biochemical pharmacology. 2014; 91 (4): 522–33.
42. El-Sayes J, et al. Exercise-induced neuroplasticity: a mechanistic model and prospects for promoting plasticity. The Neuroscientist. 2019; 25 (1): 65–85.
43. Guillon L, et al. Reduced Regional Cerebral Blood Flow Measured by 99mTc-Hexamethyl Propylene Amine Oxime Single-Photon Emission Computed Tomography in Microgravity Simulated by 5-Day Dry Immersion. Frontiers in Physiology. 2021; 12: 789298.
44. Ogoh S, et al. Internal carotid, external carotid and vertebral artery blood flow responses to 3 days of head‐out dry immersion. Experimental Physiology. 2017; 102 (10): 1278–87.
45. Stahn AC, et al. Brain changes in response to long Antarctic expeditions. New England Journal of Medicine. 2019; 381 (23): 2273-5.
46. Mahadevan AD, et al. Head-down-tilt bed rest with elevated CO2: effects of a pilot spaceflight analog on neural function and performance during a cognitive-motor dual task. Frontiers in Physiology. 2021; 12: 654906.
47. Luxton JJ, et al. Telomere length dynamics and DNA damage responses associated with long-duration spaceflight. Cell Reports. 2020; 33 (10): 108457.
Рецензия
Для цитирования:
Латарцев К.В., Демина П.Н., Яшина В.А., Каспранский Р.Р. Структурные и функциональные изменения в головном мозге космонавтов под влиянием микрогравитации. Медицина экстремальных ситуаций. 2024;26(2):20-26. https://doi.org/10.47183/mes.2024.008
For citation:
Latartsev K.V., Demina P.N., Yashina V.A., Kaspranskiy R.R. Structural and functional changes in the brain of cosmonauts under the influence of microgravity. Extreme Medicine. 2024;26(2):20-26. https://doi.org/10.47183/mes.2024.008