Preview

Медицина экстремальных ситуаций

Расширенный поиск

Антиоксидантные эффекты синтетического аналога тиронамина при экспериментальной ишемии головного мозга

https://doi.org/10.47183/mes.2024.003

Аннотация

Окислительный стресс при ишемическом инсульте — один из основных факторов, повреждающих нервную ткань. Тиреоидные гормоны оказывают существенное влияние на редокс-статус организма, однако влияние их производных, тиронаминов, рассматриваемых в качестве потенциальных нейропротекторов, на показатели перекисного окисления липидов (ПОЛ) изучено недостаточно. Целью исследования было изучить влияние синтетического аналога тиронамина Т0АМ на основные показатели ПОЛ в модели острой ишемии головного мозга. Для моделирования острой ишемии головного мозга у белых крыс выполняли необратимую перевязку правой общей сонной артерии. Животные были разделены на две группы — контрольную без лечения и экспериментальную, в которой интраперитонеально вводили синтетический аналог тиронамина Т0АМ (75 мг/кг массы тела крысы). Спустя сутки крысу подвергали декапитации, и ткань коры больших полушарий головного мозга извлекали для биохимического анализа. Из показателей ПОЛ определяли малоновый диальдегид (МДА), супероксиддисмутазу (СОД), глутатионпероксидазу (ГПО) спектрофотометрически. На фоне введения синтетического аналога тиронамина Т0АМ наблюдали статистически значимое снижение содержания МДА в ишемизированном полушарии в 2 раза (р = 0,022), повышение активности ГПО в ткани головного мозга в 2,49 раза (р = 0,004) для интактного и в 2,65 раза (р = 0,021) — для ишемизированного полушарий и увеличение активности СОД в ишемизированном полушарии в 1,23 раза (р = 0,042). Синтетический аналог тиронамина Т0АМ обладает значительным потенциалом в отношении активации механизмов антиоксидантной защиты в коре головного мозга белых лабораторных крыс в условиях острой полушарной ишемии.

Об авторах

Д. А. Филимонов
Институт неотложной и восстановительной хирургии имени В. К. Гусака Министерства здравоохранения Российской Федерации
Россия

Дмитрий Алексеевич Филимонов

пр-т Ленинский, д. 47, г. Донецк, 283045



А. Б. Ересько
Объединенный институт ядерных исследований
Россия

Дубна



Е. В. Ракша
Объединенный институт ядерных исследований
Россия

Дубна



Н. Н. Трубникова
Институт неотложной и восстановительной хирургии имени В. К. Гусака Министерства здравоохранения Российской Федерации
Россия

Донецк



Р. В. Ищенко
Институт неотложной и восстановительной хирургии имени В. К. Гусака Министерства здравоохранения Российской Федерации
Россия

Донецк



Д. А. Терещенко
Институт неотложной и восстановительной хирургии имени В. К. Гусака Министерства здравоохранения Российской Федерации
Россия

Донецк



И. А. Кисиленко
Институт неотложной и восстановительной хирургии имени В. К. Гусака Министерства здравоохранения Российской Федерации
Россия

Донецк



И. Н. Носова
Институт неотложной и восстановительной хирургии имени В. К. Гусака Министерства здравоохранения Российской Федерации
Россия

Донецк



Список литературы

1. Buchan AM, Pelz DM. Neuroprotection in Acute Ischemic Stroke: A Brief Review. Can J Neurol Sci. 2022; 49 (6): 741–5. PMID: 34526172. DOI: 10.1017/cjn.2021.223.

2. Menon B, Ramalingam K, Kumar R. Evaluating the Role of Oxidative Stress in Acute Ischemic Stroke. J Neurosci Rural Pract. 2020; 11 (1): 156–9. DOI: 10.1055/s-0039-3402675.

3. Elsayed WM, Abdel-Gawad El-HA, Mesallam DIA, Tamer S. The relationship between oxidative stress and acute ischemic stroke severity and functional outcome. The Egyptian Journal of Neurology, Psychiatry and Neurosurgery. 2020; 56: 1–6. DOI: 10.1186/s41983-020-00206-y.

4. Carlsson MJ, Vollmer AS, Demuth P, Heylmann D, Reich D, Quarz C, et al. p53 triggers mitochondrial apoptosis following DNA damage-dependent replication stress by the hepatotoxin methyleugenol. Cell Death Dis. 2022; 13 (11): 1009. DOI: 10.1038/s41419-022-05446-9.

5. Khan M, Mukherjee S, Bank S, Maiti S. Role of Thyroid Hormone and Oxidant Stress in Cardiovascular Diseases. Endocr Metab Immune Disord Drug Targets. 2021; 21 (7): 1282–8. DOI: 10.2174/1871530320666200917114501.

6. Glombik K, Detka J, Kurek A, Budziszewska B. Impaired brain energy metabolism: involvement in depression and hypothyroidism. Front Neurosci. 2020; 14: 586939. DOI: 10.3389/fnins.2020.586939.

7. Incerpi S, Gionfra F, Luca De R, Candelotti E, Vito De P, Percario ZA, et al. Extranuclear effects of thyroid hormones and analogs during development: An old mechanism with emerging roles. Front Endocrinol (Lausanne). 2022; 13: 961744. DOI: 10.3389/fendo.2022.961744.

8. Rastoldo G, Tighilet B. Thyroid Axis and Vestibular Physiopathology: From Animal Model to Pathology. Int J Mol Sci. 2023; 24 (12): 9826. DOI: 10.3390/ijms24129826.

9. Chiellini G, Nesi G, Digiacomo M, Malvasi R, Espinoza S, Sabatini M, et al. Design, Synthesis, and Evaluation of Thyronamine Analogues as Novel Potent Mouse Trace Amine Associated Receptor 1 (mTAAR1) Agonists. J Med Chem. 2015; 58 (12): 5096–107. DOI: 10.1021/acs.jmedchem.5b00526.

10. Olopade FE, Femi-Akinlosotu OM, Odiri E, Shokunbi MT. Differential effects of common carotid artery occlusion models of ischaemic stroke on sensorimotor function and infarct sizes in rats. Arch Bas App Med. 2021; 9: 135–144.

11. Gad SC, Cassidy CD, Aubert N, Spainhour B, Robbe H. Nonclinical vehicle use in studies by multiple routes in multiple species. Int J Toxicol. 2006; 25 (6): 499–521. DOI: 10.1080/10915810600961531. PMID: 17132609.

12. Филимонов Д. А., Ересько А. Б., Белоцерковская М. А., Трубникова Н. Н., Федорова А. А., Сауткина Т. Ю. Терморегуляторные эффекты метаболитов тиреоидных гормонов (тиронамина Т0АМ) в in-vivo эксперименте. Вестник неотложной и восстановительной хирургии. 2019; 4 (4): 214–22.

13. Kelmanson IV, Shokhina AG, Kotova DA, Pochechuev MS, Ivanova AD, Kostyuk AI, et al. In vivo dynamics of acidosis and oxidative stress in the acute phase of an ischemic stroke in a rodent model. Redox Biol. 2021; 48: 102178. DOI: 10.1016/j.redox.2021.102178. PMID: 34773835. PMCID: PMC8600061.

14. Yaseen Z, Chowdhury D, Shantaram M, Agarwal S. Prognostic significance of plasma homocysteine and malondialdehyde in patients with acute ischemic stroke. Intern J Pharma Research and Health Sciences. 2015; 3 (3): 727–36. DOI: 10.1186/s12883-021-02257-x.

15. Zhang JJ, Sanchez VDI, Chan JN, Hui ESK, Lau KK, Wang X, et al. Biomarkers for prognostic functional recovery poststroke: A narrative review. Front Cell Dev Biol. 2023; 10: 1062807. DOI: 10.3389/fcell.2022.1062807.

16. Crack PJ, Taylor JM, Flentjar NJ, Haan de J, Hertzog P, Iannello RC, et al. Increased infarct size and exacerbated apoptosis in the glutathione peroxidase-1 (Gpx-1) knockout mouse brain in response to ischemia/reperfusion injury. J Neurochem. 2001; 78 (6): 1389–99. DOI: 10.1046/j.1471-4159.2001.00535.x. PMID: 11579147.

17. Vaskova J, Kocan L, Vasko L, Perjesi P. Glutathione-Related Enzymes and Proteins: A Review. Molecules. 2023; 28 (3): 1447. DOI: 10.3390/molecules28031447.

18. Kamal FZ, Lefter R, Jaber H, Balmus IM, Ciobica A, Iordache AC. The Role of Potential Oxidative Biomarkers in the Prognosis of Acute Ischemic Stroke and the Exploration of Antioxidants as Possible Preventive and Treatment Options. Int J Mol Sci. 2023; 24 (7): 6389. DOI: 10.3390/ijms24076389.

19. Hoehn B, Yenari MA, Sapolsky RM, Steinberg GK. Glutathione peroxidase overexpression inhibits cytochrome C release and proapoptotic mediators to protect neurons from experimental stroke. Stroke. 2003; 34: 2489–94. DOI: 10.1161/01.STR.0000091268.25816.19.

20. Srikrishna R, Suresh DR. Biochemical Study of Antioxidant Profile in Acute Ischemic Stroke. British Journal of Medical Practitioners. 2009; 2 (1): 35–7.

21. Spranger M, Krempien S, Schwab S, Donneberg S, Hacke W. Superoxide dismutase activity in serum of patients with acute cerebral ischemic injury. Correlation with clinical course and infarct size. Stroke. 1997; 28 (12): 2425–8. DOI: 10.1161/01.str.28.12.2425.

22. Akinlua I, Asaolu MF, Ojo OC, Oyebanji GO. Evaluation of Oxidative Stress and Antioxidant Level of Stroke Patients in Osun State, South-Western Nigeria. Journal of Biosciences and Medicines. 2019; 7 (5): 189–94. DOI: 10.4236/jbm.2019.75020.

23. Rutigliano G, Zucchi R. Molecular Variants in Human Trace Amine-Associated Receptors and Their Implications in Mental and Metabolic Disorders. Cell Mol Neurobiol. 2020; 40 (2): 239– 55. DOI: 10.1007/s10571-019-00743-y.

24. Leo di N, Moscato S, Borso M, Sestito S, Polini B, Bandini L, et al. Delivery of Thyronamines (TAMs) to the Brain: A Preliminary Study. Molecules. 2021; 26 (6): 1616. DOI: 10.3390/molecules26061616.

25. Rutigliano G, Bandini L, Sestito S, Chiellini G. 3-Iodothyronamine and Derivatives: New Allies Against Metabolic Syndrome? Int J Mol Sci. 2020; 21 (6): 2005. DOI: 10.3390/ijms21062005.

26. Venditti P, Napolitano G, Stefano L Di, Chiellini G, Zucchi R, Scanlan TS, et al. Effects of the thyroid hormone derivatives 3-iodothyronamine and thyronamine on rat liver oxidative capacity. Molecular and Cellular Endocrinology. 2011; 341 (1–2): 55–62. DOI: 10.1016/j.mce. 2011.05.013.

27. Martin JV, Sarkar PK. Nongenomic roles of thyroid hormones and their derivatives in adult brain: are these compounds putative neurotransmitters? Front Endocrinol (Lausanne). 2023; 14: 1210540. DOI: 10.3389/fendo.2023.1210540.

28. Yan X, Fu X, Jia Y, Ma X, Tao J, Yang T, et al. Nrf2/Keap1/ARE Signaling Mediated an Antioxidative Protection of Human Placental Mesenchymal Stem Cells of Fetal Origin in Alveolar Epithelial Cells. Oxid Med Cell Longev. 2019; 2019: 2654910. DOI: 10.1155/2019/2654910.

29. Farina M, Vieira LE, Buttari B, Profumo E, Saso L. The Nrf2 Pathway in Ischemic Stroke: A Review. Molecules. 2021; 26 (16): 5001. DOI: 10.3390/molecules26165001. PMID: 34443584. PMCID: PMC8399750.

30. Ulasov AV, Rosenkranz AA, Georgiev GP, Sobolev AS. Nrf2/Keap1/ARE signaling: Towards specific regulation. Life Sci. 2022; 291: 120111. DOI: 10.1016/j.lfs.2021.120111.


Рецензия

Для цитирования:


Филимонов Д.А., Ересько А.Б., Ракша Е.В., Трубникова Н.Н., Ищенко Р.В., Терещенко Д.А., Кисиленко И.А., Носова И.Н. Антиоксидантные эффекты синтетического аналога тиронамина при экспериментальной ишемии головного мозга. Медицина экстремальных ситуаций. 2024;26(1):64-71. https://doi.org/10.47183/mes.2024.003

For citation:


Filimonov D.A., Eresko A.B., Raksha E.V., Trubnikova N.N., Ischenko R.V., Tereschenko D.A., Kisilenko I.A., Nosova I.N. Antioxidant effects of the synthetic thyronamine analogue in experimental cerebral ischemia. Extreme Medicine. 2024;26(1):64-71. https://doi.org/10.47183/mes.2024.003

Просмотров: 53


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2713-2757 (Print)
ISSN 2713-2765 (Online)